Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 May 29:5:22.
doi: 10.1186/1742-2094-5-22.

Neuromyelitis optica pathogenesis and aquaporin 4

Affiliations
Review

Neuromyelitis optica pathogenesis and aquaporin 4

David J Graber et al. J Neuroinflammation. .

Abstract

Neuromyelitis optica (NMO) is a severe, debilitating human disease that predominantly features immunopathology in the optic nerves and the spinal cord. An IgG1 autoantibody (NMO-IgG) that binds aquaporin 4 (AQP4) has been identified in the sera of a significant number of NMO patients, as well as in patients with two related neurologic conditions, bilateral optic neuritis (ON), and longitudinal extensive transverse myelitis (LETM), that are generally considered to lie within the NMO spectrum of diseases. NMO-IgG is not the only autoantibody found in NMO patient sera, but the correlation of pathology in central nervous system (CNS) with tissues that normally express high levels of AQP4 suggests NMO-IgG might be pathogenic. If this is the case, it is important to identify and understand the mechanism(s) whereby an immune response is induced against AQP4. This review focuses on open questions about the "events" that need to be understood to determine if AQP4 and NMO-IgG are involved in the pathogenesis of NMO. These questions include: 1) How might AQP4-specific T and B cells be primed by either CNS AQP4 or peripheral pools of AQP4? 2) Do the different AQP4-expressing tissues and perhaps the membrane structural organization of AQP4 influence NMO-IgG binding efficacy and thus pathogenesis? 3) Does prior infection, genetic predisposition, or underlying immune dysregulation contribute to a confluence of events which lead to NMO in select individuals? A small animal model of NMO is essential to demonstrate whether AQP4 is indeed the incipient autoantigen capable of inducing NMO-IgG formation and NMO. If the NMO model is consistent with the human disease, it can be used to examine how changes in AQP4 expression and blood-brain barrier (BBB) integrity, both of which can be regulated by CNS inflammation, contribute to inductive events for anti-AQP4-specific immune response. In this review, we identify reagents and experimental questions that need to be developed and addressed to enhance our understanding of the pathogenesis of NMO. Finally, dysregulation of tolerance associated with autoimmune disease appears to have a role in NMO. Animal models would allow manipulation of hormone levels, B cell growth factors, and other elements known to increase the penetrance of autoimmune disease. Thus an AQP4 animal model would provide a means to manipulate events which are now associated with NMO and thus demonstrate what set of events or multiplicity of events can push the anti-AQP4 response to be pathogenic.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Aquaporin 4 is a type III water channel regulator with limited surface exposed residues. AQP4 has been cloned from mice, rats, and humans. Algorithms predicted a type III transmembrane protein with intracellular n- and c-termini (left panel shows topology). Resides predicted in the extracellular loops are shown in one letter code. Residues based on the crystal structure [25] that are predicted to be in the exposed extracellular loops are highlighted in either blue (Loop A) green (Loop C), or orange-red (Loop E). Differences between rat (same as mouse) and human sequences in the exposed loops are noted by single letter code in white.
Figure 2
Figure 2
Model of rat AQP4. The RasMol 2.7.2 program is available on the WWW and was used to manipulate the protein data base file, 2D57 [25]. RasMol 2.7.2 is an updated version of RasMol 2.6 developed by Roger Sayle while at the Biomolecular Structures Group, Glaxo Wellcome Research & Development, Stevenage, Hertfordshire, UK. The left image shows both ribbon and space filling motifs. The ribbons are the six alpha helices that span the plasma membrane. The c-terminal and n-terminal domains were not part of the crystal structure but would be projecting downward from the red and blue helices, respectively. The top of the molecule shown in space filling format represents three loops that are thought to be surface exposed: Loop A (blue), Loop C (green) and Loop E (orange-red). The image to the right is the view of the top of AQP4 looking down its central axis.
Figure 3
Figure 3
Potential B cell epitopes of AQP4. The top two panels represent a side view (left image, Loop E facing viewer; right image Loop A to the left) of AQP4 with amino acid residues shown in helical, space-filling, or ball and stick format. The space-filling format represents the proposed extracellular loops (Loop A, blue, Loop C green, and Loop E orange-red). Ball and stick motif represent amino acids within the loops that are potential antibody contact residues because of O (red) or N (blue) atoms available for H-bonding or salt-bridge interactions with anti-AQP4-specific IgG1. The middle panel is the top view of AQP4 with formatting the same as described for the top two images. The bottom set of images has been restricted to show only the loops. This view clearly shows the lateral projection rather than upward along the long axis of AQP4 of side-chains of amino acids that could interact with anti-AQP4-specific antibodies (left image, Loop E facing the viewer; right image, Loop A facing viewer). The amino acids in ball and stick representation are: Loop A, S62, E63, N64; Loop C, H151, N153, T155; Loop E, N226, E228, H229.
Figure 4
Figure 4
Immunogenic peptide of AQP4. The space filling motif on the left shows the helices from the top of the AQP4 molecule. The white residues are amino acids 206–231 with several shown in CPK format that highlights oxygen (red) or nitrogen (blue) atoms that might be available for interactions with antibody combining sites. The residues in white on the bottom of the figure are 207, 208 while those on the top represent 216–231 with 224–229 in CPK format. In residues 224–229, M224, G225, W227, and E228 for a cluster of residues that have multiple atoms available for H-bonding. The image on the right is rotated 90° relative to the image on the left.

References

    1. Cree BAC, Goodin DS, Hauser SL. Neuromyelitis Optica. Semin Neurol. 2002;22:105–22. doi: 10.1055/s-2002-36534. - DOI - PubMed
    1. Mandler RN. Neuromyelitis optica – Devic's syndrome, update. Autoimmun Rev. 2006;5:537–43. doi: 10.1016/j.autrev.2006.02.008. - DOI - PubMed
    1. Jacob A, Matiello M, Wingerchuk DM, Lucchinetti CF, Pittock SJ, Weinshenker BG. Neuromyelitis optica: changing concepts. J Neuroimmunol. 2007;187:126–38. doi: 10.1016/j.jneuroim.2007.04.009. - DOI - PubMed
    1. Wingerchuk DM. Neuromyelitis optica. International Ms Journal. 2006;13:42–50. - PubMed
    1. Wingerchuk DM. Neuromyelitis optica: new findings on pathogenesis. Int Rev Neurobiol. 2007;79:665–88. - PubMed

Publication types

MeSH terms

LinkOut - more resources