Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Sep;22(9):3337-47.
doi: 10.1096/fj.07-104604. Epub 2008 May 29.

Dual role of the arginine methyltransferase CARM1 in the regulation of c-Fos target genes

Affiliations

Dual role of the arginine methyltransferase CARM1 in the regulation of c-Fos target genes

Lucas Fauquier et al. FASEB J. 2008 Sep.

Abstract

Fos proteins, the prototypic members of basic region-leucine zipper (bZIP) transcription factors, bind to other bZIP proteins to form the activator protein-1 (AP-1) complex, which regulates the expression of a plethora of target genes. Notably, c-Fos target genes include members of the matrix metalloproteinase (MMP) gene family and c-fos is overexpressed in a number of metastatic cancers, suggesting its direct involvement in this process. Here, we reveal that c-Fos-mediated transcriptional activation is regulated by the protein arginine methyltransferase CARM1 and by all three members of the p160 protein family of coactivators. Carm1-deficient cells showed a dramatic reduction in the expression level of c-Fos target genes MMP-1b, -3, and -13, indicating a major role for CARM1 in regulating the expression of these genes. RNA interference combined with quantitative polymerase chain reaction demonstrated that CARM1 and p160 proteins synergize to activate expression of MMP-1b, -3, and -13 in vivo. Furthermore, we show that CARM1 also regulates MMP expression at the post-transcriptional level, either positively or negatively. Our data indicate that CARM1 can play a dual role in the expression of AP-1 target genes involved in cancer or other diseases by acting at the transcriptional as well as at the post-transcriptional levels.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources