Commensal bacteria trigger a full dendritic cell maturation program that promotes the expansion of non-Tr1 suppressor T cells
- PMID: 18511576
- DOI: 10.1189/jlb.0108017
Commensal bacteria trigger a full dendritic cell maturation program that promotes the expansion of non-Tr1 suppressor T cells
Abstract
Dendritic cells (DCs) orchestrate the immune response establishing immunity versus tolerance. These two opposite functions may be dictated by DC maturation status with maturity linked to immunogenicity. DCs directly interact with trillions of noninvasive intestinal bacteria in vivo, a process that contributes to gut homeostasis. We here evaluated the maturation program elicited in human DCs by direct exposure to commensal-related bacteria (CB) in the absence of inflammatory signals. We showed that eight gram(+) and gram(-) CB strains up-regulated costimulatory molecule expression in DCs and provoked a chemokine receptor switch similar to that activated by gram(+) pathogens. CB strains may be classified into three groups according to DC cytokine release: high IL-12 and low IL-10; low IL-12 and high IL-10; and low IL-12 and IL-10. All CB-treated DCs produced IL-1beta and IL-6 and almost no TGF-beta. Yet, CB instructed DCs to convert naive CD4+ T cells into hyporesponsive T cells that secreted low or no IFN-gamma, IL-10, and IL-17 and instead, displayed suppressor function. These data demonstrate that phenotypic DC maturation combined to an appropriate cytokine profile is insufficient to warrant Th1, IL-10-secreting T regulatory Type 1 (Tr1), or Th17 polarization. We propose that commensal flora and as such, probiotics manipulate DCs by a yet-unidentified pathway to enforce gut tolerance.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials