Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 May 15;266(14):9327-31.

Postnatal changes in Na,K-ATPase isoform expression in rat cardiac ventricle. Conservation of biphasic ouabain affinity

Affiliations
  • PMID: 1851176
Free article

Postnatal changes in Na,K-ATPase isoform expression in rat cardiac ventricle. Conservation of biphasic ouabain affinity

P A Lucchesi et al. J Biol Chem. .
Free article

Abstract

The cardiac glycoside sensitivity of the rat heart changes during postnatal maturation and in response to certain pathological conditions. The Na,K-ATPase is thought to be the receptor for cardiac glycosides, and there are three isozymes of its catalytic (alpha) subunit with different cardiac glycoside affinities: alpha 1 (low affinity) and alpha 2 and alpha 3 (high affinity). We examined the developmental expression of the alpha subunit isozymes in rat ventricular membrane preparations by immunoblotting with isozyme-specific antibodies. The alpha 1 isozyme was present throughout all stages of maturation. A developmental switch from alpha 3 to alpha 2 occurred between 14 and 21 days after birth. Measurements of [3H]ouabain binding and inhibition of Na,K-ATPase activity indicated that alpha 2 and alpha 3 should make equivalent contributions to ion pump capacity; in both neonatal natal and adult preparations, ouabain interacted with a single class of high-affinity binding sites (KD = 15 or 40 nM, respectively; Bmax = 4-5 pmol/mg protein), and at low concentrations produced a similar degree of Na,K-ATPase inhibition (25%). The results indicate that the developmental difference in cardiac glycoside sensitivity cannot be explained by quantitative differences in the proportion of high-affinity isozymes of the Na,K-ATPase. The switch from alpha 3 to alpha 2 coincides with other major changes in cardiac electrophysiology and calcium metabolism.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources