Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jun 25;130(25):7848-50.
doi: 10.1021/ja8024092. Epub 2008 May 31.

Broadly hysteretic H2 adsorption in the microporous metal-organic framework Co(1,4-benzenedipyrazolate)

Affiliations

Broadly hysteretic H2 adsorption in the microporous metal-organic framework Co(1,4-benzenedipyrazolate)

Hye Jin Choi et al. J Am Chem Soc. .

Abstract

Reaction of Co(CF3SO3)2 with the new molecule 1,4-benzenedi(4'-pyrazolyl) (H2BDP) in N,N'-diethylformamide (DEF) at 130 degrees C generates the metal-organic framework Co(BDP).2DEF.H2O (1). X-ray analysis reveals the structure of 1 to contain chains of tetrahedrally ligated Co2+ ions linked through BDP2- ligands to generate a three-dimensional framework with 10 x 10 A2 channels. Thermogravimetric data shows the framework to have a high thermal stability, and complete desolvation occurs upon heating at 170 degrees C under dynamic vacuum for two days to afford 1d. X-ray powder diffraction data indicates that 1d possesses a substantially different structure, but converts back to 1 upon exposure to DEF, consistent with the presence of a flexible framework. Nitrogen adsorption isotherms measured for 1d at 77 and 87 K reveal an unprecedented five-step adsorption process and a Langmuir surface area of 2670 m2/g. In addition, high-pressure H2 adsorption data reveal hysteretic uptake and release, with hysteresis loops of width 1.1, 3.8, 13, and 27 bar that shift to higher pressures as the temperature increases from 50 to 65, 77, and 87 K, respectively. The high H2 uptake capacity of 5.5 excess wt % at 50 K suggests that such materials could potentially find utility for hydrogen storage via a kinetic trapping mechanism. Variable-temperature kinetics measurements have also allowed the first study of H2 diffusion within a metal-organic framework, revealing an energy barrier of 0.62 kJ/mol for H2 diffusing within the pores.

PubMed Disclaimer

LinkOut - more resources