Evolution and potential function of fibrinogen-like domains across twelve Drosophila species
- PMID: 18513432
- PMCID: PMC2429915
- DOI: 10.1186/1471-2164-9-260
Evolution and potential function of fibrinogen-like domains across twelve Drosophila species
Abstract
Background: The fibrinogen-like (FBG) domain consists of approximately 200 amino acid residues, which has high sequence similarity to the C-terminal halves of fibrinogen beta and gamma chains. Fibrinogen-related proteins (FREPs) containing one or more FBG domains are found universally in vertebrates and invertebrates. In invertebrates, FREPs are involved in immune responses and other aspects of physiology. To understand the complexity of this gene family in Drosophila, we analyzed FREPs in twelve Drosophila species.
Results: Using the genome data from 12 Drosophila species, we identified FBG domains in each species. The results show that the gene numbers in each species vary from 14 genes up to 43 genes. Using sequence profile analysis, we found that FBG domains have high sequence similarity and are highly conserved throughout. By comparison of structure and sequence conservation, some of the FBG domains in Drosophila melanogaster are predicted to function in recognition of carbohydrates and their derivatives on the surface of microorganisms in innate immunity.
Conclusion: Sequence and structural analyses show that FREP family across 12 Drosophila species contains conserved FBG domains. Expansion of the FREP families in Drosophila is mainly accounted by a major expansion of FBG domains.
Figures



References
-
- Gorkun OV, Veklich YI, Weisel JW, Lord ST. The conversion of fibrinogen to fibrin: recombinant fibrinogen typifies plasma fibrinogen. Blood. 1997;89:4407–14. - PubMed
-
- Gokudan S, Muta T, Tsuda R, Koori K, Kawahara T, Seki N, Mizunoe Y, Wai SN, Iwanaga S, Kawabata S. Horseshoe crab acetyl grouprecognizing lectins involved in innate immunity are structurally related to fibrinogen. Proc Natl Acad Sci USA. 1999;96:10086–10091. doi: 10.1073/pnas.96.18.10086. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases