Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Oct;19(5):727-36.
doi: 10.1016/j.jelekin.2008.04.009. Epub 2008 May 29.

The intrinsic stiffness of the in vivo lumbar spine in response to quick releases: implications for reflexive requirements

Affiliations

The intrinsic stiffness of the in vivo lumbar spine in response to quick releases: implications for reflexive requirements

Stephen H M Brown et al. J Electromyogr Kinesiol. 2009 Oct.

Abstract

Torso muscles contribute both intrinsic and reflexive stiffness to the spine; recent modeling studies indicate that intrinsic stiffness alone is sometimes insufficient to maintain stability in dynamic situations. The purpose of this study was to experimentally test this idea by limiting muscular reflexive responses to sudden trunk perturbations. Nine healthy males lay on a near-frictionless apparatus and were subjected to quick trunk releases from the neutral position into flexion or right-side lateral bend. Different magnitudes of moment release were accomplished by having participants contract their musculature to create a range of moment levels. EMG was recorded from 12 torso muscles and three-dimensional lumbar spine rotations were monitored. A second-order linear model of the trunk was employed to estimate trunk stiffness and damping during each quick release. Participants displayed very limited reflex responses to the quick load release paradigms, and consequently underwent substantial trunk displacements (>50% flexion range of motion and >70% lateral bend range of motion in the maximum moment trials). Trunk stiffness increased significantly with significant increases in muscle activation, but was still unable to prevent the largest trunk displacements in the absence of reflexes. Thus, it was concluded that the intrinsic stiffness of the trunk was insufficient to adequately prevent the spine from undergoing potentially harmful rotational displacements. Voluntary muscular responses were more apparent than reflexive responses, but occurred too late and of too low magnitude to sufficiently make up for the limited reflexes.

PubMed Disclaimer

Publication types

LinkOut - more resources