Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Aug 1;377(2):355-63.
doi: 10.1016/j.virol.2008.04.030. Epub 2008 Jun 2.

Four-tiered pi interaction at the dimeric interface of HIV-1 integrase critical for DNA integration and viral infectivity

Affiliations
Free article

Four-tiered pi interaction at the dimeric interface of HIV-1 integrase critical for DNA integration and viral infectivity

Laith Q Al-Mawsawi et al. Virology. .
Free article

Abstract

HIV-1 integrase (IN) is an essential enzyme for viral infection. Here, we report an extensive pi electron orbital interaction between four amino acids, W132, M178, F181 and F185, located at the dimeric interface of IN that is critical for the strand transfer activity alone. Catalysis of nine different mutant IN proteins at these positions were evaluated. Whereas the 3'-processing activity is predominantly strong, the strand transfer activity of each enzyme was completely dependent on an intact pi electron orbital interaction at the dimeric interface. Four representative IN mutants were constructed in the context of the infectious NL4.3 HIV-1 viral clone. Whereas viruses with an intact pi electron orbital interaction at the IN dimeric interface replicated comparable to wild type, viruses containing an abolished pi interaction were non-infectious. Q-PCR analysis of viral DNA forms during viral replication revealed pleiotropic effects of most mutations. We hypothesize that the pi interaction is a critical contact point for the assembly of functional IN multimeric complexes, and that IN multimerization is required for a functional pre-integration complex. The rational design of small molecule inhibitors targeting the disruption of this pi-pi interaction should lead to powerful anti-retroviral drugs.

PubMed Disclaimer

Publication types

LinkOut - more resources