Differential interference with Pythium ultimum sporangial activation and germination by Enterobacter cloacae in the corn and cucumber spermospheres
- PMID: 18515482
- PMCID: PMC2493179
- DOI: 10.1128/AEM.00263-08
Differential interference with Pythium ultimum sporangial activation and germination by Enterobacter cloacae in the corn and cucumber spermospheres
Abstract
Differential protection of plants by Enterobacter cloacae was studied by investigating early sensing and response behavior of Pythium ultimum sporangia toward seeds in the presence or absence of E. cloacae. Ten percent of P. ultimum sporangia were activated within the first 30 min of exposure to cucumber seeds. In contrast, 44% of the sporangia were activated as early as 15 min after exposure to corn seeds with over 80% sporangial activation by 30 min. Germ tubes emerged from sporangia after 2.5 and 1.0 h in the cucumber and corn spermospheres, respectively. Seed application of the wild-type strain of E. cloacae (EcCT-501R3) reduced sporangial activation by 45% in the cucumber spermosphere, whereas no reduction was observed in the corn spermosphere. Fatty acid transport and degradation mutants of E. cloacae (strains EcL1 and Ec31, respectively) did not reduce sporangial activation in either of the spermospheres. Although wild-type or mutant strains of E. cloacae failed to reduce seed colonization incidence, pathogen biomass on cucumber seeds was reduced in the presence of E. cloacae strains EcCT-501R3 and Ec31 by 4 and 8 h after sowing, respectively. By 12 h, levels of P. ultimum on cucumber seeds treated with E. cloacae EcCT-501R3 did not differ from levels on noninoculated seeds. On corn seeds, P. ultimum biomass was not affected by the presence of any E. cloacae strain. When introduced after sporangial activation had occurred, E. cloacae failed to reduce P. ultimum biomass on cucumber seeds compared with that on nontreated seeds. Also, increasing numbers of sporangia used to inoculate seeds yielded increased pathogen biomass at each sampling time. This indicates a direct link between the level of seed-colonizing biomass of P. ultimum and the number of activated and germinated sporangia in the spermosphere, suggesting that E. cloacae suppresses P. ultimum seed infections by reducing sporangial activation and germination within the first 30 to 90 min after sowing.
Figures




References
-
- Fukui, R., G. S. Campbell, and R. J. Cook. 1994. Factors influencing the incidence of embryo infection by Pythium spp. during germination of wheat seeds in soils. Phytopathology 84:695-702.
-
- Fukui, R., M. N. Schroth, M. Hendson, and J. G. Hancock. 1994. Interaction between strains of pseudomonads in sugar beet spermospheres and their relationship to pericarp colonization by Pythium ultimum in soil. Phytopathology 84:1322-1330.
-
- Hadar, Y., G. E. Harman, A. G. Taylor, and J. M. Norton. 1983. Effects of pregermination of pea and cucumber seeds and of seed treatment with Enterobacter cloacae on rots caused by Pythium spp. Phytopathology 73:1322-1325.
-
- Lievens, B., M. Brouwer, A. C. R. C. Vanachter, C. A. Levesque, B. P. A. Cammue, and B. P. H. J. Thomma. 2005. Quantitative assessment of phytopathogenic fungi in various substrates using a DNA macroarray. Environ. Microbiol. 7:1698-1710. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources