Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1991:40:289-326.
doi: 10.1016/s0079-6603(08)60845-4.

DNA helicases of Escherichia coli

Affiliations
Review

DNA helicases of Escherichia coli

S W Matson. Prog Nucleic Acid Res Mol Biol. 1991.

Abstract

A great deal has been learned in the last 15 years with regard to how helicase enzymes participate in DNA metabolism and how they interact with their DNA substrates. However, many questions remain unanswered. Of critical importance is an understanding of how NTP hydrolysis and hydrogen-bond disruption are coupled. Several models exist and are being tested; none has been proven. In addition, an understanding of how a helicase disrupts the hydrogen bonds holding duplex DNA together is lacking. Recently, helicase enzymes that unwind duplex RNA and DNA.RNA hybrids have been described. In some cases, these are old enzymes with new activities. In other cases, these are new enzymes only recently discovered. The significance of these reactions in the cell remains to be clarified. However, with the availability of significant amounts of these enzymes in a highly purified state, and mutant alleles in most of the genes encoding them, the answers to these questions should be forthcoming. The variety of helicases found in E. coli, and the myriad processes these enzymes are involved in, were perhaps unexpected. It seems likely that an equally large number of helicases will be discovered in eukaryotic cells. In fact, several helicases have been identified and purified from eukaryotic sources ranging from viruses to mouse cells (4-13, 227-234). Many of these helicases have been suggested to have roles in DNA replication, although this remains to be shown conclusively. Helicases with roles in DNA repair, recombination, and other aspects of DNA metabolism are likely to be forthcoming as we learn more about these processes in eukaryotic cells.

PubMed Disclaimer

Publication types

LinkOut - more resources