Tumor receptor imaging
- PMID: 18523071
- DOI: 10.2967/jnumed.107.045963
Tumor receptor imaging
Abstract
Tumor receptors play an important role in carcinogenesis and tumor growth and have been some of the earliest targets for tumor-specific therapy, for example, the estrogen receptor in breast cancer. Knowledge of receptor expression is key for therapy directed at tumor receptors and traditionally has been obtained by assay of biopsy material. Tumor receptor imaging offers complementary information that includes evaluation of the entire tumor burden and characterization of the heterogeneity of tumor receptor expression. The nature of the ligand-receptor interaction poses a challenge for imaging--notably, the requirement for a low molecular concentration of the imaging probe to avoid saturating the receptor and increasing the background because of nonspecific uptake. For this reason, much of the work to date in tumor receptor imaging has been done with radionuclide probes. In this overview of tumor receptor imaging, aspects of receptor biochemistry and biology that underlie tumor receptor imaging are reviewed, with the estrogen-estrogen receptor system in breast cancer as an illustrative example. Examples of progress in radionuclide receptor imaging for 3 receptor systems--steroid receptors, somatostatin receptors, and growth factor receptors-are highlighted, and recent investigations of receptor imaging with other molecular imaging modalities are reviewed.
Similar articles
-
Experience with indium-111 and yttrium-90-labeled somatostatin analogs.Curr Pharm Des. 2002;8(20):1781-807. doi: 10.2174/1381612023393756. Curr Pharm Des. 2002. PMID: 12171531 Review.
-
Update: improvement strategies for peptide receptor scintigraphy and radionuclide therapy.Cancer Biother Radiopharm. 2008 Apr;23(2):137-57. doi: 10.1089/cbr.2007.0435. Cancer Biother Radiopharm. 2008. PMID: 18454684 Review.
-
Quantitative PET imaging of Met-expressing human cancer xenografts with 89Zr-labelled monoclonal antibody DN30.Eur J Nucl Med Mol Imaging. 2008 Oct;35(10):1857-67. doi: 10.1007/s00259-008-0774-5. Epub 2008 May 20. Eur J Nucl Med Mol Imaging. 2008. PMID: 18491091
-
Somatostatin receptor PET imaging with Gallium-68 labeled peptides.Q J Nucl Med Mol Imaging. 2007 Sep;51(3):244-50. Epub 2007 Apr 30. Q J Nucl Med Mol Imaging. 2007. PMID: 17464267 Review.
-
Tumor imaging and therapy using radiolabeled somatostatin analogues.Acc Chem Res. 2009 Jul 21;42(7):873-80. doi: 10.1021/ar800188e. Acc Chem Res. 2009. PMID: 19445476
Cited by
-
Iodine 125-labeled mesenchymal-epithelial transition factor binding peptide-click-cRGDyk heterodimer for glioma imaging.Cancer Sci. 2011 Aug;102(8):1516-21. doi: 10.1111/j.1349-7006.2011.01983.x. Epub 2011 Jul 1. Cancer Sci. 2011. PMID: 21575108 Free PMC article.
-
Near-infrared molecular probes for in vivo imaging.Curr Protoc Cytom. 2012 Apr;Chapter 12:Unit12.27. doi: 10.1002/0471142956.cy1227s60. Curr Protoc Cytom. 2012. PMID: 22470154 Free PMC article.
-
Phage-Enabled Nanomedicine: From Probes to Therapeutics in Precision Medicine.Angew Chem Int Ed Engl. 2017 Feb 13;56(8):1964-1992. doi: 10.1002/anie.201606181. Epub 2017 Jan 24. Angew Chem Int Ed Engl. 2017. PMID: 27491926 Free PMC article. Review.
-
Multimodality and nanoparticles in medical imaging.Dalton Trans. 2011 Jun 21;40(23):6087-103. doi: 10.1039/c0dt01656j. Epub 2011 Mar 14. Dalton Trans. 2011. PMID: 21409202 Free PMC article.
-
Peptides and peptide hormones for molecular imaging and disease diagnosis.Chem Rev. 2010 May 12;110(5):3087-111. doi: 10.1021/cr900361p. Chem Rev. 2010. PMID: 20225899 Free PMC article. Review. No abstract available.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources