Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Feb;68(2):104-9.
doi: 10.1111/j.1600-0773.1991.tb02045.x.

Age- and sex-dependent dichlorovinyl cysteine (DCVC) accumulation and toxicity in the mouse kidney: relation to development of organic anion transport and beta-lyase activity

Affiliations

Age- and sex-dependent dichlorovinyl cysteine (DCVC) accumulation and toxicity in the mouse kidney: relation to development of organic anion transport and beta-lyase activity

P O Darnerud et al. Pharmacol Toxicol. 1991 Feb.

Abstract

The age- and sex-dependent changes in mouse kidney accumulation and toxicity of S-1,2-dichlorovinyl cysteine (DCVC) was investigated. The results were compared to developmental changes in the basal activities of organic anion transport in vitro (PAH uptake) and of cysteine conjugate beta-lyase (substrate: benzothiazolyl cysteine). Following 14C-DCVC (5 mg/kg body wt. orally), the renal 14C-accumulation increased with age, whereas the degree of tubular DCVC lesions was about the same at all time points. Regarding the sex differentiation in adult mice, both the kidney 14C-accumulation levels and the kidney lesion (5 mg/kg DCVC) were most accentuated in the female mouse. However, at a higher dose (25 mg/kg), the male kidney was most affected. Changes in the anion transport and beta-lyase activities did not directly mirror the age-dependent increase in kidney radioactivity. Sex differences in anion transport and beta-lyase activities were also seen, the former activity being highest in the male mouse and the latter in the female. The conflicting results of 14C-accumulation and histopathology in developing mice, may be explained by the ongoing development of the kidney; increase in the number of functionally active nephrons may result in an increased 14C-accumulation (in d.p.m./mg wet wt.) but still the same degree of lesion, when estimated per nephron. In the adult mice, the higher susceptibility of the female may be correlated to the higher beta-lyase activity in the same sex. Regarding the inversed results at a higher dose, rate limitations of transport and bioactivation systems may play a role.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources