Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Aug 18;141(1-2):10-21.
doi: 10.1016/j.autneu.2008.04.005. Epub 2008 Jun 4.

Neuromuscular changes in a rat model of colitis

Affiliations

Neuromuscular changes in a rat model of colitis

Mariona Aulí et al. Auton Neurosci. .

Abstract

Intracolonic administration of Trichinella spiralis larvae in rats causes colitis with features similar to ulcerative colitis, notably with inflammation predominantly limited to the colonic mucosa. Our aim was to characterize the functional and neurochemical changes occurring within the myenteric (MP) and submucosal plexuses (SMP) during T. spiralis-induced colitis. Infected rats had decreased body weight, altered stool consistency and elevated myeloperoxidase activity, 6 and 14 days post-infection (PI). Responses to acetylcholine and KCl in circular muscle strips were reduced in infected tissues, demonstrating an impairment of contractility. In addition, there was a decrease in spontaneous motor activity and reduced sensitivity to the nitric oxide synthase (NOS) inhibitor L-NOArg, corresponding with a significant reduction in NOS immunoreactive neurons in the MP of infected animals. T. spiralis did not alter the total number of myenteric or submucosal neurons. Substance P innervation of submucosal blood vessels was reduced after infection, as were submucosal calretinin and calbindin immunoreactive neurons. No changes in choline acetyltransferase and calcitonin gene-related peptide immunoreactivity were observed. T. spiralis-induced colitis causes profound neuromuscular adaptations. The reduction in NOS neurons appears to underlie changes in motility.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources