Structural biology of pectin degradation by Enterobacteriaceae
- PMID: 18535148
- PMCID: PMC2415742
- DOI: 10.1128/MMBR.00038-07
Structural biology of pectin degradation by Enterobacteriaceae
Abstract
Pectin is a structural polysaccharide that is integral for the stability of plant cell walls. During soft rot infection, secreted virulence factors from pectinolytic bacteria such as Erwinia spp. degrade pectin, resulting in characteristic plant cell necrosis and tissue maceration. Catabolism of pectin and its breakdown products by pectinolytic bacteria occurs within distinct cellular environments. This process initiates outside the cell, continues within the periplasmic space, and culminates in the cytoplasm. Although pectin utilization is well understood at the genetic and biochemical levels, an inclusive structural description of pectinases and pectin binding proteins by both extracellular and periplasmic enzymes has been lacking, especially following the recent characterization of several periplasmic components and protein-oligogalacturonide complexes. Here we provide a comprehensive analysis of the protein folds and mechanisms of pectate lyases, polygalacturonases, and carbohydrate esterases and the binding specificities of two periplasmic pectic binding proteins from Enterobacteriaceae. This review provides a structural understanding of the molecular determinants of pectin utilization and the mechanisms driving catabolite selectivity and flow through the pathway.
Figures








Similar articles
-
Identification of a bacterial pectin acetyl esterase in Erwinia chrysanthemi 3937.Mol Microbiol. 1997 Jun;24(6):1285-301. doi: 10.1046/j.1365-2958.1997.4331800.x. Mol Microbiol. 1997. PMID: 9218776
-
PehN, a polygalacturonase homologue with a low hydrolase activity, is coregulated with the other Erwinia chrysanthemi polygalacturonases.J Bacteriol. 2002 May;184(10):2664-73. doi: 10.1128/JB.184.10.2664-2673.2002. J Bacteriol. 2002. PMID: 11976295 Free PMC article.
-
PaeX, a second pectin acetylesterase of Erwinia chrysanthemi 3937.J Bacteriol. 2003 May;185(10):3091-100. doi: 10.1128/JB.185.10.3091-3100.2003. J Bacteriol. 2003. PMID: 12730169 Free PMC article.
-
Pectin: cell biology and prospects for functional analysis.Plant Mol Biol. 2001 Sep;47(1-2):9-27. Plant Mol Biol. 2001. PMID: 11554482 Review.
-
Homogalacturonan-modifying enzymes: structure, expression, and roles in plants.J Exp Bot. 2014 Oct;65(18):5125-60. doi: 10.1093/jxb/eru272. Epub 2014 Jul 23. J Exp Bot. 2014. PMID: 25056773 Free PMC article. Review.
Cited by
-
KdgF, the missing link in the microbial metabolism of uronate sugars from pectin and alginate.Proc Natl Acad Sci U S A. 2016 May 31;113(22):6188-93. doi: 10.1073/pnas.1524214113. Epub 2016 May 16. Proc Natl Acad Sci U S A. 2016. PMID: 27185956 Free PMC article.
-
Paenibacillus amylolyticus 27C64 has a diverse set of carbohydrate-active enzymes and complete pectin deconstruction system.J Ind Microbiol Biotechnol. 2019 Jan;46(1):1-11. doi: 10.1007/s10295-018-2098-1. Epub 2018 Oct 30. J Ind Microbiol Biotechnol. 2019. PMID: 30377865 Free PMC article.
-
The Cyclic Peptide Cyclo-zp80r Controls Salmonella enterica and Listeria monocytogenes Replication in Non-Concentrated (NFC) Orange Juice: Antibacterial Effects and Mechanisms of Action.Foods. 2025 Jul 17;14(14):2506. doi: 10.3390/foods14142506. Foods. 2025. PMID: 40724330 Free PMC article.
-
Comparative evaluation of the genomes of three common Drosophila-associated bacteria.Biol Open. 2016 Sep 15;5(9):1305-16. doi: 10.1242/bio.017673. Biol Open. 2016. PMID: 27493201 Free PMC article.
-
The Water Hyacinth Microbiome: Link Between Carbon Turnover and Nutrient Cycling.Microb Ecol. 2019 Oct;78(3):575-588. doi: 10.1007/s00248-019-01331-9. Epub 2019 Feb 1. Microb Ecol. 2019. PMID: 30706113
References
-
- Abbott, D. W., and A. B. Boraston. 2007. Specific recognition of saturated and 4,5-unsaturated hexuronate sugars by a periplasmic binding protein involved in pectin catabolism. J. Mol. Biol. 369759-770. - PubMed
-
- Abbott, D. W., and A. B. Boraston. 2007. The structural basis for exopolygalacturonase activity in a family 28 glycoside hydrolase. J. Mol. Biol. 3681215-1222. - PubMed
-
- Abbott, D. W., and A. B. Boraston. 2007. A family 2 pectate lyase displays a rare fold and transition metal-assisted beta-elimination. J. Biol. Chem. 28235328-35336. - PubMed
-
- Abbott, D. W., J. M. Eirin-Lopez, and A. B. Boraston. 2008. Insight into ligand diversity and novel biological roles for family 32 carbohydrate-binding modules. Mol. Biol. Evol. 25155-167. - PubMed
-
- Abbott, D. W., S. Hrynuik, and A. B. Boraston. 2007. Identification and characterization of a novel periplasmic polygalacturonic acid binding protein from Yersinia enterocolitica. J. Mol. Biol. 3671023-1033. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous