Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Jul;258(3):631-58.
doi: 10.1113/jphysiol.1976.sp011438.

Stimulus-secretion coupling: role of cyclic AMP, cyclic GMP and calcium in mediating enzyme (kallikrein) secretion in the submandibular gland

Stimulus-secretion coupling: role of cyclic AMP, cyclic GMP and calcium in mediating enzyme (kallikrein) secretion in the submandibular gland

J Albano et al. J Physiol. 1976 Jul.

Abstract

1. The role of adenosine 3':5'-phosphate (cyclic AMP) and guanosine 3':5'-phosphate (cyclic GMP) as second messengers for the enzyme secretory response evoked by the autonomic neurotransmitters, noradrenaline and acetylcholine, is examined in this in vitro study on the guinea-pig submandibular gland. 2. Noradrenaline increased enzyme (kallikrein) secretion. The initial stimulation of enzyme release appeared to be dose-dependent. The time course of cumulative kallikrein secretion revealed a complex pattern. Isoprenaline and phenylephrine were almost as potent as noradrenaline in releasing kallikrein. Both propranolol and phentolamine were required to fully inhibit the noradrenaline-stimulated enzyme secretion. 3. The cumulative secretion of kallikrein evoked by acetylcholine was dose-dependent. The onset of secretion showed a significantly greater time-lag than that observed with noradrenaline. Atropine effectively blocked the release of kallikrein by acetylcholine. 4. Dibutyryl cyclic AMP stimulated enzyme secretion. Dibutyryl cyclic GMP caused an initial increase which was not maintained. 5. The cyclic nucleotide phosphodiesterase inhibitors, theophylline and papaverine, increased basal kallikrein secretion. The action of the cyclic phosphodiesterase inhibitors on the secretory response to noradrenaline, acetylcholine, dibutyryl cyclic AMP and dibutyryl cyclic GMP was complex. In general, the increase in enzyme release produced by the secretagogues was additively enhanced by both inhibitors. 6. Omission of calcium inhibited both acetylcholine and dibutyryl cyclic GMP stimulated kallikrein release, but to a lesser degree than that of noradrenaline and dibutyryl cyclic AMP. High concentrations of extracellular calcium (10 mM) appeared to enhance the action of acetylcholine. 7. Noradrenaline produced a rise in the intracellular level of cyclic AMP. The increase preceded the stimulated secretion of kallikrein. Of the various adrenergic agonists, noradrenaline and isoprenaline were the most potent, whereas phenylephrine was significantly less effective in raising basal cyclic AMP values. Acetylcholine was without effect, even in the presence of a cyclic phosphodiesterase inhibitor. 8. Acetylcholine and noradrenaline raised intracellular levels of cyclic GMP only when the tissue incubations were performed in the presence of a cyclic phosphodiesterase inhibitor. The increase in cyclic GMP produced by acetylcholine preceded enzyme secretion. 9. Morphological data substantiated the finding that the in vitro release of kallikrein evoked by the secretagogues was associated with the depletion of secretory granules and vacuolations in acinar cells of the gland slices. 10. The molecular mechanisms which control enzyme secretion in the exocrine submandibular gland are discussed. Models are presented for the role of transmitter-specific cyclic nucleotides and calcium in stimulus-secretion coupling.

PubMed Disclaimer

References

    1. Acta Physiol Scand. 1955 Dec 22;35(1):1-25 - PubMed
    1. Eur J Biochem. 1967 Mar;1(1):96-101 - PubMed
    1. Biochem Biophys Res Commun. 1965 Feb 3;18:452-4 - PubMed
    1. Biochim Biophys Acta. 1975 Mar 14;385(1):101-13 - PubMed
    1. J Physiol. 1975 Feb;245(2):121P-122P - PubMed

MeSH terms

LinkOut - more resources