Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Mar;28(3):700-3.

[Speciation analysis of trace elements Cu, Fe and Zn in serum by flame atomic absorption spectrophotometry]

[Article in Chinese]
Affiliations
  • PMID: 18536447

[Speciation analysis of trace elements Cu, Fe and Zn in serum by flame atomic absorption spectrophotometry]

[Article in Chinese]
Jun Hu et al. Guang Pu Xue Yu Guang Pu Fen Xi. 2008 Mar.

Abstract

Since biological functions of the elements are generally different, depending on their chemical forms, chemical speciation analysis is really important in metallomics research. Thus, multielement analysis and chemical speciation of the elements in serum were carried out in the present work. A hyphenated technique was developed for high-throughput speciation analysis of the copper, iron and zinc in serum by molecular biology technology and flame atomic absorption spectrophotometry (AAS). Here, Cu, Fe and Zn in serum were classifyied as the forms of combination and non-combination. The serum protein was precipitated by 60% concentration of ethanol under hypothermy. The forms of combination of Cu, Fe and Zn in serum which combined with proteins were in precipitations, and the forms of non-combination of Cu, Fe and Zn in serum, which were free ions, were in supernatant. The total amount of Cu, Fe and Zn in serum and the amount of the forms of non-combination of Cu, Fe and Zn were analyzed by AAS. The amount of the forms of combination of Cu, Fe and Zn was obtained by calculation. The detection limit of Cu in serum by the method is around and 9.84 x 10(-3) microg x mL(-1). For Fe and Zn, the detection limit is about 2.76 x 10(-2) microg x mL(-1) and 1.06 x 10(-3) microg x mL(-1), respectively. The percentage recovery of trace elements Cu, Fe and Zn by the proposed procedure is in the range 95.0%-101.0%, 95.0%-102.0% and 95.0%-103.0%, respectively. The relative standard deviation (RSD) of trace elements Cu, Fe and Zn in the serum is in the range 1.88%-2.26%, 0.56%-1.59% and 0.34%-1.36%, respectively. Speciation of trace elements Cu, Fe and Zn in the serum of SD rat were analyzed by the method.

PubMed Disclaimer

Similar articles

Publication types

LinkOut - more resources