Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008;15(15):1493-9.
doi: 10.2174/092986708784638834.

The role of glycogen synthase kinase-3beta in normal haematopoiesis, angiogenesis and leukaemia

Affiliations
Review

The role of glycogen synthase kinase-3beta in normal haematopoiesis, angiogenesis and leukaemia

T Holmes et al. Curr Med Chem. 2008.

Abstract

Glycogen synthase kinase 3 beta (GSK-3beta) was one of the first kinases identified and studied, initially for its role in the regulation of glycogen synthesis. Over the past decade, interest in GSK-3beta has grown far beyond glycogen metabolism, and this is due in large measure to the critical role that GSK-3beta plays in the regulation of many other cellular processes, particularly cell proliferation and apoptosis. GSK-3beta has been shown to regulate the proteolysis and sub-cellular compartmentalization of a number of proteins directly involved in the regulation of cell cycling, proliferation, differentiation and apoptosis. GSK-3beta also regulates the degradation of proteins that regulate gene expression and thus affects a variety of important cell functions. Specifically, GSK-3beta controls the degradation of beta-catenin, the main effector of Wnt that regulates haematopoiesis and stem cell function. In this case GSK-3beta is a negative regulator of Wnt. In contrast, GSK-3beta positively regulates NF-kappaB, another important biochemical pathway also involved in the regulation of multiple aspects of normal and aberrant haematopoiesis. GSK-3beta regulates degradation of IkappaB, a central inhibitor of NF-kappaB. In this way, GSK-3beta acts to control the resistance of leukaemic cells to chemotherapy through the modulation of NF-kappaB, a critical factor in maintaining leukaemic cell growth. In addition, GSK-3beta regulates the pro-inflammatory activity of NF-kappaB. As GSK-3beta is a pleiotropic regulator, inhibitors may increase the range of novel anti-leukaemic and anti-inflammatory drugs that control immune response.

PubMed Disclaimer

MeSH terms

LinkOut - more resources