Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jun 9:9:276.
doi: 10.1186/1471-2164-9-276.

A simple and accurate SNP scoring strategy based on typeIIS restriction endonuclease cleavage and matrix-assisted laser desorption/ionization mass spectrometry

Affiliations

A simple and accurate SNP scoring strategy based on typeIIS restriction endonuclease cleavage and matrix-assisted laser desorption/ionization mass spectrometry

Sun Pyo Hong et al. BMC Genomics. .

Abstract

Background: We describe the development of a novel matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF)-based single nucleotide polymorphism (SNP) scoring strategy, termed Restriction Fragment Mass Polymorphism (RFMP) that is suitable for genotyping variations in a simple, accurate, and high-throughput manner. The assay is based on polymerase chain reaction (PCR) amplification and mass measurement of oligonucleotides containing a polymorphic base, to which a typeIIS restriction endonuclease recognition was introduced by PCR amplification. Enzymatic cleavage of the products leads to excision of oligonucleotide fragments representing base variation of the polymorphic site whose masses were determined by MALDI-TOF MS.

Results: The assay represents an improvement over previous methods because it relies on the direct mass determination of PCR products rather than on an indirect analysis, where a base-extended or fluorescent report tag is interpreted. The RFMP strategy is simple and straightforward, requiring one restriction digestion reaction following target amplification in a single vessel. With this technology, genotypes are generated with a high call rate (99.6%) and high accuracy (99.8%) as determined by independent sequencing.

Conclusion: The simplicity, accuracy and amenability to high-throughput screening analysis should make the RFMP assay suitable for large-scale genotype association study as well as clinical genotyping in laboratories.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Schematic summary of the RFMP genotyping strategy. PCR was done with primers designed to introduce a typeIIS restriction endonuclease recognition sequence (FokI = BstF5I; GGATG) 9 bases ahead of the polymorphism site. The enzymatic cleavage of the products leads to excision of two oligonucleotide fragments (7 mer and 13 mer) containing the variation site, and then masses of the resulting oligonucleotide fragments were examined by MALDI-TOF MS. Cleavage sites of FokI and BstF5I, an isoschizomer for FokI, are indicated by filled and blank triangles, respectively, and restriction endonuclease recognition site and primers by shaded bar and shaded arrows, respectively. One-base gap replaced by the artificial sequences and potential SNP site are denoted by blank space and a bold italic letter, respectively.
Figure 2
Figure 2
Representative MALDI-TOF MS spectra in individual samples. Genotyping results for SNPs rs1801133; masses for a pair of 7 mer and 13 mer for C and T alleles were 2226.4/3975.6 and 2241.4/3959.6, respectivley and rs1801131; masses for a pair of 7 mer and 13 mer for A and C alleles were 2249.4/3955.6 and 2225.4/3980, respectivley. X- and y- axes represent relative ion abundance and mass to charge ratio, respectively.
Figure 3
Figure 3
Allele frequency measurements on pools for different polymorphisms. Expected allele frequencies are obtained by individual genotyping. The frequencies calculated from pool data were corrected for unequal allelic representation using at least eight mass spectra of heterozygotes. The error bars represent the standard deviation.

Similar articles

References

    1. Faruqi AF, Hosono S, Driscoll MD, Dean FB, Alsmadi O, Bandaru R, Kumar G, Grimwade B, Zong Q, Sun Z, Du Y, Kingsmore S, Knott T, Lasken RS. High-throughput genotyping of single nucleotide polymorphisms with rolling circle amplification. BMC Genomics. 2001;2:4. doi: 10.1186/1471-2164-2-4. - DOI - PMC - PubMed
    1. Hall JG, Eis PS, Law SM, Reynaldo LP, Prudent JR, Marshall DJ, Allawi HT, Mast AL, Dahlberg JE, Kwiatkowski RW, de Arruda M, Neri BP, Lyamichev VI. Sensitive detection of DNA polymorphisms by the serial invasive signal amplification reaction. Proc Natl Acad Sci USA. 2000;97:8272–8277. doi: 10.1073/pnas.140225597. - DOI - PMC - PubMed
    1. Buetow KH, Edmonson M, MacDonald R, Clifford R, Yip P, Kelley J, Little DP, Strausberg R, Koester H, Cantor CR, Braun A. High-throughput development and characterization of a genomewide collection of gene-based single nucleotide polymorphism markers by chip-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Proc Natl Acad Sci USA. 2001;98:581–584. doi: 10.1073/pnas.021506298. - DOI - PMC - PubMed
    1. Godovac-Zimmermann J, Brown LR. Perspectives for mass spectrometry and functional proteomics. Mass Spectrom Rev. 2001;20:1–57. doi: 10.1002/1098-2787(2001)20:1<1::AID-MAS1001>3.0.CO;2-J. - DOI - PubMed
    1. Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. 1998;60:2299–2301. doi: 10.1021/ac00171a028. - DOI - PubMed

Publication types

Substances

LinkOut - more resources