Cardiac myofibroblasts express alpha smooth muscle actin during right ventricular pressure overload in the rabbit
- PMID: 1853934
- PMCID: PMC1886148
Cardiac myofibroblasts express alpha smooth muscle actin during right ventricular pressure overload in the rabbit
Abstract
A number of changes occur in contractile proteins and mechanical performance of the heart within 2 weeks of right ventricular pressure overload in 8- to 12-week-old rabbits. These changes are accompanied by increases in collagen concentration and the ratio of type I to type III collagen. The purpose of the present study was to evaluate the evolution of these connective tissue changes morphologically and to characterize the interstitial cells that might be responsible. The myocardium is infiltrated by mononuclear inflammatory cells 2 days after banding, accompanied by focal myocyte necrosis. By 7 days, the inflammatory infiltrates subside and the damaged myocytes seen at 2 days are replaced by new collagen and a population of spindle-shaped cells, with ultrastructural features of myofibroblasts. A significant proportion of these cells contain alpha smooth muscle actin by immunohistochemical analysis. At 14 days, there is a large increase in stainable collagen with complex remodeling and reduplication of the collagen fiber network of the interstitium. Alpha smooth muscle actin-containing myofibroblasts persist, but their immunoreactivity appears reduced compared with day 7. The authors hypothesize that the interstitial fibroblasts that acquire smooth-muscle-like features in this model play a critical role in the heart's response to severe and sudden mechanical stress and are at least partly responsible for the changes in connective tissue that occur as a result of pressure overload in this model.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical