Probabilistic framework for brain connectivity from functional MR images
- PMID: 18541489
- DOI: 10.1109/TMI.2008.915672
Probabilistic framework for brain connectivity from functional MR images
Abstract
This paper unifies our earlier work on detection of brain activation (Rajapakse and Piyaratna, 2001) and connectivity (Rajapakse and Zhou, 2007) in a probabilistic framework for analyzing effective connectivity among activated brain regions from functional magnetic resonance imaging (fMRI) data. Interactions among brain regions are expressed by a dynamic Bayesian network (DBN) while contextual dependencies within functional images are formulated by a Markov random field. The approach simultaneously considers both the detection of brain activation and the estimation of effective connectivity and does not require a priori model of connectivity. Experimental results show that the present approach outperforms earlier fMRI analysis techniques on synthetic functional images and robustly derives brain connectivity from real fMRI data.
Similar articles
-
Analyzing the connectivity between regions of interest: an approach based on cluster Granger causality for fMRI data analysis.Neuroimage. 2010 Oct 1;52(4):1444-55. doi: 10.1016/j.neuroimage.2010.05.022. Epub 2010 Jun 1. Neuroimage. 2010. PMID: 20472076
-
Learning effective brain connectivity with dynamic Bayesian networks.Neuroimage. 2007 Sep 1;37(3):749-60. doi: 10.1016/j.neuroimage.2007.06.003. Epub 2007 Jun 14. Neuroimage. 2007. PMID: 17644415
-
Model-independent method for fMRI analysis.IEEE Trans Med Imaging. 2004 Mar;23(3):285-96. doi: 10.1109/TMI.2003.823064. IEEE Trans Med Imaging. 2004. PMID: 15027521 Clinical Trial.
-
Bayesian networks for fMRI: a primer.Neuroimage. 2014 Feb 1;86:573-82. doi: 10.1016/j.neuroimage.2013.10.020. Epub 2013 Oct 18. Neuroimage. 2014. PMID: 24140939 Review.
-
Brain functional localization: a survey of image registration techniques.IEEE Trans Med Imaging. 2007 Apr;26(4):427-51. doi: 10.1109/TMI.2007.892508. IEEE Trans Med Imaging. 2007. PMID: 17427731 Review.
Cited by
-
Networks involved in olfaction and their dynamics using independent component analysis and unified structural equation modeling.Hum Brain Mapp. 2014 May;35(5):2055-72. doi: 10.1002/hbm.22312. Epub 2013 Jul 1. Hum Brain Mapp. 2014. PMID: 23818133 Free PMC article.
-
Bayesian network models in brain functional connectivity analysis.Int J Approx Reason. 2014 Jan 1;56(1 Pt 1):10.1016/j.ijar.2013.03.013. doi: 10.1016/j.ijar.2013.03.013. Int J Approx Reason. 2014. PMID: 24319317 Free PMC article.
-
Causal pattern recovery from neural spike train data using the Snap Shot Score.J Comput Neurosci. 2010 Aug;29(1-2):231-252. doi: 10.1007/s10827-009-0174-2. Epub 2009 Jul 31. J Comput Neurosci. 2010. PMID: 19644745
-
A linear structural equation model for covert verb generation based on independent component analysis of FMRI data from children and adolescents.Front Syst Neurosci. 2011 Jun 1;5:29. doi: 10.3389/fnsys.2011.00029. eCollection 2011. Front Syst Neurosci. 2011. PMID: 21660108 Free PMC article.
-
Oriented Markov random field based dendritic spine segmentation for fluorescence microscopy images.Neuroinformatics. 2010 Oct;8(3):157-70. doi: 10.1007/s12021-010-9073-y. Neuroinformatics. 2010. PMID: 20585900
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical