Global convergence of SMO algorithm for support vector regression
- PMID: 18541498
- DOI: 10.1109/TNN.2007.915116
Global convergence of SMO algorithm for support vector regression
Abstract
Global convergence of the sequential minimal optimization (SMO) algorithm for support vector regression (SVR) is studied in this paper. Given l training samples, SVR is formulated as a convex quadratic programming (QP) problem with l pairs of variables. We prove that if two pairs of variables violating the optimality condition are chosen for update in each step and subproblems are solved in a certain way, then the SMO algorithm always stops within a finite number of iterations after finding an optimal solution. Also, efficient implementation techniques for the SMO algorithm are presented and compared experimentally with other SMO algorithms.
Similar articles
-
Rigorous proof of termination of SMO algorithm for support vector machines.IEEE Trans Neural Netw. 2005 May;16(3):774-6. doi: 10.1109/TNN.2005.844857. IEEE Trans Neural Netw. 2005. PMID: 15941003
-
Global convergence of decomposition learning methods for support vector machines.IEEE Trans Neural Netw. 2006 Nov;17(6):1362-9. doi: 10.1109/TNN.2006.880584. IEEE Trans Neural Netw. 2006. PMID: 17131653
-
An SMO algorithm for the potential support vector machine.Neural Comput. 2008 Jan;20(1):271-87. doi: 10.1162/neco.2008.20.1.271. Neural Comput. 2008. PMID: 18045009
-
Toward the training of feed-forward neural networks with the D-optimum input sequence.IEEE Trans Neural Netw. 2006 Mar;17(2):357-73. doi: 10.1109/TNN.2006.871704. IEEE Trans Neural Netw. 2006. PMID: 16566464
-
Artificial neural networks in bioprocess state estimation.Adv Biochem Eng Biotechnol. 1992;46:1-33. doi: 10.1007/BFb0000703. Adv Biochem Eng Biotechnol. 1992. PMID: 1636477 Review.
Cited by
-
Machine Learning-Based Modeling of pH-Sensitive Silicon Nanowire (SiNW) for Ion Sensitive Field Effect Transistor (ISFET).Sensors (Basel). 2024 Dec 18;24(24):8091. doi: 10.3390/s24248091. Sensors (Basel). 2024. PMID: 39771826 Free PMC article.
-
Predicting DNA-binding sites of proteins based on sequential and 3D structural information.Mol Genet Genomics. 2014 Jun;289(3):489-99. doi: 10.1007/s00438-014-0812-x. Epub 2014 Jan 22. Mol Genet Genomics. 2014. PMID: 24448651
-
Systematic evaluation of supervised classifiers for fecal microbiota-based prediction of colorectal cancer.Oncotarget. 2017 Feb 7;8(6):9546-9556. doi: 10.18632/oncotarget.14488. Oncotarget. 2017. PMID: 28061434 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Miscellaneous