Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Aug 15;112(4):1120-8.
doi: 10.1182/blood-2007-09-112268. Epub 2008 Jun 9.

PGE2 induces angiogenesis via MT1-MMP-mediated activation of the TGFbeta/Alk5 signaling pathway

Affiliations
Free article

PGE2 induces angiogenesis via MT1-MMP-mediated activation of the TGFbeta/Alk5 signaling pathway

Arántzazu Alfranca et al. Blood. .
Free article

Abstract

The development of a new vascular network is essential for the onset and progression of many pathophysiologic processes. Cyclooxygenase-2 displays a proangiogenic activity in in vitro and in vivo models, mediated principally through its metabolite prostaglandin E(2) (PGE(2)). Here, we provide evidence for a novel signaling route through which PGE(2) activates the Alk5-Smad3 pathway in endothelial cells. PGE(2) induces Alk5-dependent Smad3 nuclear translocation and DNA binding, and the activation of this pathway involves the release of active TGFbeta from its latent form through a process mediated by the metalloproteinase MT1-MMP, whose membrane clustering is promoted by PGE(2). MT1-MMP-dependent transforming growth factor beta (TGFbeta) signaling through Alk5 is also required for PGE(2)-induced endothelial cord formation in vitro, and Alk5 kinase activity is required for PGE(2)-induced neovascularization in vivo. These findings identify a novel signaling pathway linking PGE(2) and TGFbeta, 2 effectors involved in tumor growth and angiogenesis, and reveal potential targets for the treatment of angiogenesis-related disorders.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources