Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jul 15;80(14):5574-82.
doi: 10.1021/ac800548g. Epub 2008 Jun 12.

Mass spectral metabonomics beyond elemental formula: chemical database querying by matching experimental with computational fragmentation spectra

Affiliations

Mass spectral metabonomics beyond elemental formula: chemical database querying by matching experimental with computational fragmentation spectra

Dennis W Hill et al. Anal Chem. .

Abstract

Despite recent advances in NMR and mass spectrometry, the structural identification of organic compounds in complex biofluids remains a significant analytical challenge. For mass spectroscopy applications, chemical identification is generally limited to determination of elemental formula. Here we test the hypothesis that unknown chemical structures can be determined by matching their experimental collision-induced dissociation (CID) fragmentation spectra with computational fragmentation spectra of compounds retrieved from chemical databases. The monoisotopic molecular weights (MIMW +/- 10 ppm) of 102 "test" compounds were used to download 102 "bins" from the PubChem database. Each bin contained the corresponding test compound and, on average, 272 other candidate compounds, including 158 compounds having the same elemental formula as the test compound. Commercially available software was used to generate fragmentation spectra for all compounds in each of the 102 bins. Experimental CID spectra for each of the 102 test compounds were then compared to the computational spectra in order to rank candidate compounds based on number of fragment MIMW matches. This method returned the test compound as the highest ranking (or tied with the highest ranking) compound for 65 of the 102 bins. The test compound was ranked within the top 20 candidate compounds for 87 bins. In addition, the correct elemental formula was ranked first for 98 of 102 bins. Thus, matching experimental with computational fragmentation spectra is a valid method for rapidly discriminating among compounds having the same elemental formula and provides a novel approach for querying chemical databases for structural information.

PubMed Disclaimer

Publication types

LinkOut - more resources