Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Feb;87(1):48-51.
doi: 10.1111/j.1755-3768.2008.01190.x. Epub 2008 Jun 11.

Long-term biomechanical properties of rabbit cornea after photodynamic collagen crosslinking

Affiliations
Free article

Long-term biomechanical properties of rabbit cornea after photodynamic collagen crosslinking

Gregor Wollensak et al. Acta Ophthalmol. 2009 Feb.
Free article

Abstract

Purpose: Photodynamic riboflavin/ultraviolet-A (UVA)-induced collagen cross-linking, which increases the biomechanical stiffness of the human cornea by about 300%, has been introduced recently as a possible treatment for progressive keratoconus. The present study was undertaken to evaluate the longterm biomechanical effects of this new cross-linking treatment as a necessary prerequisite to its clinical success.

Methods: The corneas of the left eyes of nine male rabbits were cross-linked. The contralateral eyes served as controls. After removal of the central 7 mm of the epithelium, the corneas were treated with the photosensitizer riboflavin and UVA irradiation for 30 mins with an irradiance of 3 mW/cm(2) using a 370-nm UVA double diode. Groups of three animals were killed immediately after treatment and at 3 and 8 months, respectively. Biomechanical stress-strain measurements were performed using a microcomputer-controlled biomaterial tester on 4 x 10-mm corneal strips.

Results: Corneal thickness in the treated rabbit cornea was 408 +/- 20 microm. A constant and significant increase in ultimate stress (of 69.7-106.0%), Young's modulus of elasticity (of 78.4-87.4%) and a decrease in ultimate strain (of 0.57-78.4%) were found over a time period of up to 8 months after cross-linking treatment.

Conclusions: Riboflavin/UVA-induced collagen cross-linking leads to a longterm increase in biomechanical rigidity which remains stable over time. These data support our previous longterm clinical observations and give hope that this new treatment will halt progressive keratoconus definitively.

PubMed Disclaimer

LinkOut - more resources