Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008;82(2):97-104.
doi: 10.1159/000138387. Epub 2008 Jun 12.

Identification of peptides that inhibit regulator of G protein signaling 4 function

Affiliations

Identification of peptides that inhibit regulator of G protein signaling 4 function

Yuren Wang et al. Pharmacology. 2008.

Abstract

Regulators of G protein signaling (RGS) are a family of GTPase-activating proteins (GAP) that interact with heterotrimeric G proteins in the negative regulation of G-protein-coupled receptor (GPCR) signaling. RGS4, the first identified mammalian member of the RGS family, has been implicated in many GPCR signaling pathways involved in disease states. We report herein the identification of a 16-amino-acid peptide (P17) as an inhibitor of RGS4. The peptide was found by screening a random peptide library using RGS4 as 'bait' in a yeast two-hybrid system. This peptide inhibited RGS4 GAP activity on Galpha(i1)in a GTPase assay, and blocked the interaction between RGS4 and Galpha(i1)in a pull-down assay. The peptide displayed dose-dependent inhibition of RGS4 and Galpha-interacting protein (GAIP) GAP activities, yet showed no substantial effect on RGS7. Electrophysiological studies in Xenopus oocytes demonstrated that P17 attenuates RGS4 modulation of M(2) muscarinic receptor stimulation of GIRK (G-protein-mediated inwardly rectifying potassium) channels. Deletion of an arginine at the N terminus of P17 abolished its ability to inhibit RGS4 GAP activity, as did deletions of C-terminal residues. The P17 peptide showed no similarity to any known peptide sequence. Further investigation and optimization of the peptide may provide unique information for the development of RGS4 inhibitors for future therapeutic application.

PubMed Disclaimer

MeSH terms

LinkOut - more resources