Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Sep;74(6):740-9.
doi: 10.1038/ki.2008.246. Epub 2008 Jun 11.

KCa3.1 potassium channels are critical for cAMP-dependent chloride secretion and cyst growth in autosomal-dominant polycystic kidney disease

Affiliations
Free article

KCa3.1 potassium channels are critical for cAMP-dependent chloride secretion and cyst growth in autosomal-dominant polycystic kidney disease

Mamdouh Albaqumi et al. Kidney Int. 2008 Sep.
Free article

Abstract

Autosomal-dominant polycystic kidney disease (ADPKD) is characterized by numerous fluid-filled kidney cysts. Net fluid secretion into renal cysts is caused by transepithelial transport mediated by the apical cystic fibrosis transmembrane conductance regulator chloride channel, which leads to cyst enlargement. Here we found that forskolin, a potent adenylyl cyclase agonist, stimulated anion secretion by monolayers of kidney cells derived from patients with ADPKD. TRAM-34, a specific KCa3.1 potassium channel blocker, inhibited this current, and in vitro cyst formation and enlargement by the cells cultured within a collagen gel. Net chloride secretion was enhanced by the KCa3.1 activator DCEBIO and both chloride secretion and in vitro cyst growth were inhibited by overexpression of myotubularin-related protein-6, a phosphatase that specifically inhibits KCa3.1 channel activity. Our study suggests that KCa3.1 channels play a critical role in transcellular chloride secretion and net fluid transport into the kidney cysts of patients with ADPKD by maintaining the electrochemical driving force for chloride efflux through apical chloride channels. Pharmacological inhibitors of KCa3.1 channels may provide a novel and effective therapy to delay progression to kidney failure in patients with ADPKD.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

Substances