Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Sep 30;27(22):4408-27.
doi: 10.1002/sim.3314.

A high-dimensional joint model for longitudinal outcomes of different nature

Affiliations

A high-dimensional joint model for longitudinal outcomes of different nature

Christel Faes et al. Stat Med. .

Abstract

In repeated dose-toxicity studies, many outcomes are repeatedly measured on the same animal to study the toxicity of a compound of interest. This is only one example in which one is confronted with the analysis of many outcomes, possibly of a different type. Probably the most common situation is that of an amalgamation of continuous and categorical outcomes. A possible approach towards the joint analysis of two longitudinal outcomes of a different nature is the use of random-effects models (Models for Discrete Longitudinal Data. Springer Series in Statistics. Springer: New York, 2005). Although a random-effects model can easily be extended to jointly model many outcomes of a different nature, computational problems arise as the number of outcomes increases. To avoid maximization of the full likelihood expression, Fieuws and Verbeke (Biometrics 2006; 62:424-431) proposed a pairwise modeling strategy in which all possible pairs are modeled separately, using a mixed model, yielding several different estimates for the same parameters. These latter estimates are then combined into a single set of estimates. Also inference, based on pseudo-likelihood principles, is indirectly derived from the separate analyses. In this paper, we extend the approach of Fieuws and Verbeke (Biometrics 2006; 62:424-431) in two ways: the method is applied to different types of outcomes and the full pseudo-likelihood expression is maximized at once, leading directly to unique estimates as well as direct application of pseudo-likelihood inference. This is very appealing when interested in hypothesis testing. The method is applied to data from a repeated dose-toxicity study designed for the evaluation of the neurofunctional effects of a psychotrophic drug. The relative merits of both methods are discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types