Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Apr;44(2):65-81.
doi: 10.1540/jsmr.44.65.

Physiological roles of K+ channels in vascular smooth muscle cells

Affiliations
Free article
Review

Physiological roles of K+ channels in vascular smooth muscle cells

Eun A Ko et al. J Smooth Muscle Res. 2008 Apr.
Free article

Abstract

In this review, we present the basic properties, physiological functions, regulation, and pathological alterations of four major classes of K+ channels that have been detected in vascular smooth muscle cells. Voltage-dependent K+ (Kv) channels open upon depolarization of the plasma membrane in vascular smooth muscle cells. The subsequent efflux of K+ through the channels induces repolarization to the resting membrane potential. Changes in the intracellular Ca2+ concentration and membrane depolarization stimulate large-conductance Ca2+-activated K+ (BKCa) channels, which are thought to play an important role in maintaining the membrane potential. ATP-sensitive K+ (K(ATP)) channels underscore the functional bond between cellular metabolism and membrane excitability. The blockade of KATP channel function results in vasoconstriction and depolarization in various types of vascular smooth muscle. Inward rectifier K+ (Kir) channels, which are expressed in smooth muscle of the small-diameter arteries, contribute to the resting membrane potential and basal tone. Kir channel activation has been shown to raise the extracellular K+ concentration to 10-15 mM, resulting in vasodilation. Each of K+ channels listed above is responsive to a number of vasoconstrictors and vasodilators, which act through protein kinase C (PKC) and protein kinase A (PKA), respectively. Impaired Kv, KATP, and Kir channel functions has been linked to a number of pathological conditions, which may lead to vasoconstriction.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances