Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Aug;129(2):792-800.
doi: 10.1210/endo-129-2-792.

Expression of the neural cell adhesion molecule in endocrine cells of the ovary

Affiliations

Expression of the neural cell adhesion molecule in endocrine cells of the ovary

A Mayerhofer et al. Endocrinology. 1991 Aug.

Abstract

In the adult mammalian ovary morphogenesis and differentiation processes are under hormonal control and, thus, occur in a highly regulated way during the sexual cycle. Cell-cell interactions, such as cell adhesion and cell separation, are crucial during these events. Here we show that the ovarian endocrine cells, which are prototypes of steroid-producing cells, express neural cell adhesion molecules (NCAMs). The combined use of in situ hybridization histochemistry, immunocytochemistry at the light and electron microscope levels, S1 nuclease protection assays, and Western blotting revealed that in the ovary of the adult rat during the estrus cycle and pregnancy, NCAM mRNA and the 140-kDa isoform of this protein are expressed mainly in granulosa cells of growing preantral and antral follicles and in corpora lutea. Since the granulosa cells lining the forming antrum and the antral fluid were strongly immunoreactive, a role for NCAM in the formation of the follicular antrum is proposed. The expression of NCAM was also associated with luteal cells of the active corpus luteum, indicating a role for NCAM in the morphogenesis of this endocrine compartment. Moreover, thecal cells of large follicles and hypertrophic thecal cells of atretic follicles expressed NCAM, as did interstitial cells, which are derived from thecal cells of atretic follicles. We propose that the adhesion molecule, NCAM, is an important factor involved in the recognition and intercellular interaction of ovarian endocrine cells and, thus, participates in the regulation of the cyclic remodeling processes of the ovarian endocrine compartments.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources