Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Nov;4(6):1837-45.
doi: 10.1016/j.actbio.2008.05.009. Epub 2008 May 28.

Improved injectability and in vitro degradation of a calcium phosphate cement containing poly(lactide-co-glycolide) microspheres

Affiliations

Improved injectability and in vitro degradation of a calcium phosphate cement containing poly(lactide-co-glycolide) microspheres

Xiaopeng Qi et al. Acta Biomater. 2008 Nov.

Abstract

An injectable calcium phosphate cement (CPC) containing 30 wt.% poly(lactide-co-glycolide) (PLGA) microspheres was developed in the present study. Sodium citrate solution was used as the cement liquid phase. The effects of sodium citrate concentration on the injectability, rheological properties, mechanical strength and self-setting properties of CPC containing PLGA microspheres were systematically investigated. The in vitro degradation behavior of the composite during immersion in phosphate buffer solution was also studied. With an increase in sodium citrate concentration, the viscosity and yield stress of the paste were reduced, thereby improving the injectability. At a sodium citrate concentration of 15%, the injectability of the paste reached 95%. The compressive strength of the specimen was also enhanced by the addition of sodium citrate. The specimens had a compressive strength of 32.24+/-2.72 MPa at 15% sodium citrate concentration, compared to 22.15+/-3.60 MPa for the specimen without sodium citrate. The in vitro degradation results demonstrate that incorporated PLGA microspheres can provide the required high strength to CPC in the early stage, which would gradually degrade to create macropores for bone ingrowth. In conclusion, an in situ macropore-generable CPC exhibited excellent injectability and high early strength, and should be a promising material for bone repair and bone reconstruction.

PubMed Disclaimer

Publication types

LinkOut - more resources