Enhancing peptide identification confidence by combining search methods
- PMID: 18558733
- PMCID: PMC2658881
- DOI: 10.1021/pr700798h
Enhancing peptide identification confidence by combining search methods
Abstract
Confident peptide identification is one of the most important components in mass-spectrometry-based proteomics. We propose a method to properly combine the results from different database search methods to enhance the accuracy of peptide identifications. The database search methods included in our analysis are SEQUEST (v27 rev12), ProbID (v1.0), InsPecT (v20060505), Mascot (v2.1), X! Tandem (v2007.07.01.2), OMSSA (v2.0) and RAId_DbS. Using two data sets, one collected in profile mode and one collected in centroid mode, we tested the search performance of all 21 combinations of two search methods as well as all 35 possible combinations of three search methods. The results obtained from our study suggest that properly combining search methods does improve retrieval accuracy. In addition to performance results, we also describe the theoretical framework which in principle allows one to combine many independent scoring methods including de novo sequencing and spectral library searches. The correlations among different methods are also investigated in terms of common true positives, common false positives, and a global analysis. We find that the average correlation strength, between any pairwise combination of the seven methods studied, is usually smaller than the associated standard error. This indicates only weak correlation may be present among different methods and validates our approach in combining the search results. The usefulness of our approach is further confirmed by showing that the average cumulative number of false positive peptides agrees reasonably well with the combined E-value. The data related to this study are freely available upon request.
Figures
References
-
- Kapp E. A.; Schütz F.; Connolly L. M.; Chakel J. A.; Meza J. E.; Miller C. A.; Fenyo D.; Eng J. K.; Adkins J. N.; Omenn G. S.; Simpson R. J. An evaluation, comparison, and accurate benchmarking of several publicly available ms/ms search algorithms: sensitivity and specificity analysis. Proteomics 2005, 5, 3475–3490. - PubMed
-
- Boutilier K.; Ross M.; Podtelejnikov A. V.; Orsi C.; Taylor R.; Taylor P.; Figeys D. Comparison of different search engines using validated MS/MS test datasets. Anal. Chim. Acta 2005, 534, 11–20.
-
- Keller A.; Nesvizhskii A. I.; Kolker E.; R., A. Empirical statistical model to estimate the accuracy of peptide identifications made by ms/ms and database search. Anal. Chem. 2002, 74, 5383–5392. - PubMed
-
- Benjamini Y.; Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. 1995, B57, 289–300.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
