Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jul 1;118(1):75-83.
doi: 10.1161/CIRCULATIONAHA.107.745174. Epub 2008 Jun 16.

Impact of plasma oxidized low-density lipoprotein removal on atherosclerosis

Affiliations

Impact of plasma oxidized low-density lipoprotein removal on atherosclerosis

Yasushi Ishigaki et al. Circulation. .

Abstract

Background: Several clinical studies of statin therapy have demonstrated that lowering low-density lipoprotein (LDL) cholesterol prevents atherosclerotic progression and decreases cardiovascular mortality. In addition, oxidized LDL (oxLDL) is suggested to play roles in the formation and progression of atherosclerosis. However, whether lowering oxLDL alone, rather than total LDL, affects atherogenesis remains unclear.

Methods and results: To clarify the atherogenic impact of oxLDL, lectin-like oxLDL receptor 1 (LOX-1), an oxLDL receptor, was expressed ectopically in the liver with adenovirus administration in apolipoprotein E-deficient mice at 46 weeks of age. Hepatic LOX-1 expression enhanced hepatic oxLDL uptake, indicating functional expression of LOX-1 in the liver. Although plasma total cholesterol, triglyceride, and LDL cholesterol levels were unaffected, plasma oxLDL was markedly and transiently decreased in LOX-1 mice. In controls, atherosclerotic lesions, detected by Oil Red O staining, were markedly increased (by 38%) during the 4-week period after adenoviral administration. In contrast, atherosclerotic progression was almost completely inhibited by hepatic LOX-1 expression. In addition, plasma monocyte chemotactic protein-1 and lipid peroxide levels were decreased, whereas adiponectin was increased, suggesting decreased systemic oxidative stress. Thus, LOX1 expressed in the livers of apolipoprotein E-deficient mice transiently removes oxLDL from circulating blood and possibly decreases systemic oxidative stress, resulting in complete prevention of atherosclerotic progression despite the persistence of severe LDL hypercholesterolemia and hypertriglyceridemia.

Conclusions: OxLDL has a major atherogenic impact, and oxLDL removal is a promising therapeutic strategy against atherosclerosis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms