Cell proliferation in the striatum during postnatal development: preferential distribution in subregions of the ventral striatum
- PMID: 18560887
- PMCID: PMC4455935
- DOI: 10.1007/s00429-008-0185-1
Cell proliferation in the striatum during postnatal development: preferential distribution in subregions of the ventral striatum
Abstract
Cortico-ventral basal ganglia circuitry is associated with a variety of mental health disorders including obsessive-compulsive disorder and drug addiction, disorders that emerge during childhood through young adulthood, a period in which the cortex and striatum continue to development. Moreover, cell proliferation, which is associated with development and plasticity, also continues in the cortex and striatum through adulthood. Given the implication of cortico-basal ganglia circuitry in diseases emerging during postnatal development, we studied cell proliferation at different ages in striatal regions associated with specific frontal cortical areas. The results show cell proliferation throughout the striatum at all postnatal ages. The majority of the new cells were immunoreactive for NG2 chondroitin sulfate, a marker for specific progenitor cells, but not for NeuN, a neuronal marker. Although neurogenesis was not observed, approximately 30% of the new cells appeared to be paired with a neuron. There was a significantly higher degree of cell proliferation during the first postnatal year compared to other striatal regions. Finally, throughout the juvenile years, the ventral striatal areas receiving input from the ventral, medial prefrontal cortex and orbital prefrontal cortex have significantly more new cells compared to other striatal regions. Integrity of the ventral striatum is critical for the development of goal-directed behaviors. The high number of new cells in the ventral striatum during postnatal development may be particularly important for the refinement of the cortico-striatal network, and in the formation of neural ensembles fundamental to learning during behavioral development.
Figures




References
-
- Bedard A, Gravel C, Parent A. Chemical characterization of newly generated neurons in the striatum of adult primates. Exp Brain Res. 2006;170:501–512. - PubMed
-
- Berendse HW, Galisde Graaf Y, Groenewegen HJ. Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J Comp Neurol. 1992;316:314–347. - PubMed
-
- Bergles DE, Roberts JD, Somogyi P, Jahr CE. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature. 2000;405:187–191. - PubMed
-
- Bourgeois J-P, Goldman-Rakic PS, Rakic P. Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cereb Cortex. 1994;4:78–96. - PubMed
-
- Calabresi P, Centonze D, Gubellini P, Marfia GA, Pisani A, Sancesario G, Bernardi G. Synaptic transmission in the striatum: from plasticity to neurodegeneration. Progress in Neurobiology. 2000;61:231–265. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources