Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2008 Aug 15;43(2):182-6.
doi: 10.1016/j.ijbiomac.2008.05.002. Epub 2008 May 8.

Oxyradical-induced GFP damage and loss of fluorescence

Affiliations
Comparative Study

Oxyradical-induced GFP damage and loss of fluorescence

Abeer A Alnuami et al. Int J Biol Macromol. .

Abstract

Small amounts of highly reactive oxygen species (oxyradicals) are normal by-products of cellular metabolism. However, under certain conditions large amounts of oxyradicals are generated inside cells which may cause extensive cellular damage. Not surprisingly, a large number of disease states have been linked to oxidative stress, including cancer, diabetes, Parkinson's disease, Alzheimer's disease, and heart disease. Previously, we had shown that fluorescence spectroscopy could be used to study the pH-dependence of GFP denaturation with various agents. In this report, we show that GFP readily loses its auto-fluorescence upon exposure to oxyradicals as measured by fluorescence spectroscopy. We further show that oxyradical scavengers can prevent this loss of GFP fluorescence, thus oxyradical-induced loss of GFP fluorescence could be used to screen for antioxidants. We have evaluated various parameters which could affect the sensitivity of this GFP-based oxyradical scavenging assay, such as concentration H(2)O(2) used to produce oxyradicals, pH of the buffer, as well as UV intensity. Surprisingly we found that pH had a very dramatic effect on oxyradical-induced GFP damage. GFP was found to be most susceptible to oxyradical-induced damage at pH 6.5, and least susceptible at pH 8.5. This is the first demonstration that GFP loses its fluorescence upon exposure to oxyradicals. Furthermore, the data presented here suggest that GFP could be used to develop assays to screen for antioxidants or radical scavengers.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources