Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jul 25;266(21):13828-33.

Epidermal growth factor (EGF) induces oligomerization of soluble, extracellular, ligand-binding domain of EGF receptor. A low resolution projection structure of the ligand-binding domain

Affiliations
  • PMID: 1856216
Free article

Epidermal growth factor (EGF) induces oligomerization of soluble, extracellular, ligand-binding domain of EGF receptor. A low resolution projection structure of the ligand-binding domain

I Lax et al. J Biol Chem. .
Free article

Abstract

Ligand-induced oligomerization is a universal phenomenon among growth factor receptors. Although the mechanism involved is yet to be defined, much evidence indicates that receptor oligomerization plays a crucial role in receptor activation and signal transduction. Here we show that epidermal growth factor (EGF) is able to stimulate the oligomerization of a recombinant, soluble, extracellular ligand-binding domain of EGF receptor. Covalent cross-linking experiments, analysis by sodium dodecyl sulfate-gel electrophoresis, size exclusion chromatography, and electron microscopy demonstrate that receptor dimers, trimers and larger multimers are formed in response to EGF. This establishes that receptor oligomerization is an intrinsic property of the extracellular ligand-binding domain of EGF receptor. Ligand-induced conformational change in the extracellular domain will stimulate receptor-receptor interactions. This may bring about the allosteric change involved in signal transduction from the extracellular domain across the plasma membrane, resulting in the activation of the cytoplasmic kinase domain. Electron microscopic images of individual extracellular ligand-binding domains appear as clusters of four similarly-sized stain-excluding areas arranged around a central, relatively less stain-excluded area. This suggests that the extracellular ligand-binding domain is structurally composed of four separate domains.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources