Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008;14(22):6805-14.
doi: 10.1002/chem.200800298.

Thermal isomerization of (+)-cis- and (-)-trans-pinane leading to (-)-beta-citronellene and (+)-isocitronellene

Affiliations

Thermal isomerization of (+)-cis- and (-)-trans-pinane leading to (-)-beta-citronellene and (+)-isocitronellene

Achim Stolle et al. Chemistry. 2008.

Abstract

Catalyzed and uncatalyzed rearrangement reactions of terpenoids play a major role in laboratory and industrial-scale synthesis of fine chemicals. Herein, we present our results on the thermally induced isomerization of pinane (1). Investigation of the thermal behavior of (+)-cis- (1 a) and (-)-trans-pinane (1 b) in a flow-type reactor reveals significant differences in both reactivity and selectivity concerning the formation of (-)-beta-citronellene (2) and (+)-isocitronellene (3) as main products. Possible explanations for these results are discussed on the basis of reaction mechanism and ground-state geometries for 1 a and 1 b. To identify side reactions caused from ene cyclizations of 2 and 3, additional pyrolysis experiments were conducted that enabled the identification of almost all compounds in the network of C(10)H(18)-hydrocarbon products formed from 1.

PubMed Disclaimer

Publication types

LinkOut - more resources