Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1976;8(1):1-38.
doi: 10.1016/s0079-6336(76)80010-1.

Enzyme histochemistry of bone and cartilage cells

Review

Enzyme histochemistry of bone and cartilage cells

S B Doty et al. Prog Histochem Cytochem. 1976.

Abstract

Initial studies indicated that bone and cartilage, when treated with a hypertonic glutaraldehyde fixative for a short period, retained significant enzyme activity for histochemistry and also maintained excellent fine structure. We used 6% glutaraldehyde in 0.1 M cacodylate buffer, pH = 7.2, 4 degrees C to fix small pieces of bone or cartilage for three hours while the tissues were being constantly agitated. These samples were demineralized in 10% ethylene diamine tetraacetic acid, buffered to pH = 7.2 with 0.1 M Tris HC1, at 4 degrees C. The demineralized tissue was frozen and cryostat sections 32 microns thick were taken for incubation at 37 degrees C in various media for histochemistry. For electron microscopic localization of enzymes a heavy metal capturing method had to be used. For light microscopy, the azo dye methods were frequently used, but these were not usable for electron microscopy. Alkaline phosphatase was found on the outer surface of osteoblast and hypertrophic cartilage cell membranes. The only intracellular enzyme activity was found on the mitochondrial membranes of the osteoclast and only when the pH of the media was lowered from the optimum 9.5 to 8.5. Alkaline phosphatase was not found along the osteocyte or young cartilage cell membranes...

PubMed Disclaimer

Similar articles

Cited by

MeSH terms