Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jun;63(6):729-42.
doi: 10.1002/ana.21391.

Is microglial apoptosis an early pathogenic change in cerebral X-linked adrenoleukodystrophy?

Affiliations

Is microglial apoptosis an early pathogenic change in cerebral X-linked adrenoleukodystrophy?

Florian S Eichler et al. Ann Neurol. 2008 Jun.

Abstract

Objective: Mutations in the X-linked adrenoleukodystrophy (X-ALD) protein cause accumulation of unbranched saturated very-long-chain fatty acids, particularly in brain and adrenal cortex. In humans, the genetic defect causes progressive inflammatory demyelination in the brain, where very-long-chain fatty acids accumulate within phospholipid fractions such as lysophosphatidylcholine.

Methods: To address mechanisms of inflammation, we studied microglial activation in human ALD (10 autopsies) and lysophosphatidylcholine (C24:0) injection into the parietal cortex of mice.

Results: Unexpectedly, we found a zone lacking microglia within perilesional white matter, immediately beyond the actively demyelinating lesion edge. Surrounding this zone we observed clusters of activated and apoptotic microglia within subcortical white matter. Lysophosphatidylcholine (C24:0) injection in mice led to widespread microglial activation and apoptosis.

Interpretation: Our data suggest that the distinct mononuclear phagocytic cell response seen in cerebral X-ALD results, at least in part, from aberrant signaling to cognate receptors on microglia. Our findings support a hypothesis that microglial apoptosis in perilesional white matter represents an early stage in lesion evolution and may be an appropriate target for intervention in X-ALD patients with evidence of cerebral demyelination.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources