Defective hepatitis B virus DNA is not associated with disease status but is reduced by polymerase mutations associated with drug resistance
- PMID: 18571815
- PMCID: PMC2669111
- DOI: 10.1002/hep.22386
Defective hepatitis B virus DNA is not associated with disease status but is reduced by polymerase mutations associated with drug resistance
Abstract
Defective hepatitis B virus DNA (dDNA) is reverse-transcribed from spliced hepatitis B virus (HBV) pregenomic messenger RNA (pgRNA) and has been identified in patients with chronic HBV (CH-B). The major 2.2-kb spliced pgRNA encodes a novel HBV gene product, the hepatitis B splice protein (HBSP) via a deletion and frame shift within the polymerase. Although spliced RNA and HBSP expression have been associated with increased HBV DNA levels and liver fibrosis, the role of dDNA in HBV-associated disease is largely undefined. Our aims were to (1) compare the relative proportions of dDNA (% dDNA) in a range of HBV-infected serum samples, including patients with human immunodeficiency virus (HIV)/HBV coinfection and HBV-monoinfected persons with differing severities of liver disease, and (2) determine the effect of mutations associated with drug resistance on defective DNA production. Defective DNA was detected in 90% of persons with CH-B. There was no significant difference in the relative abundance of dDNA between the monoinfected and HIV/HBV-coinfected groups. We also found no association between the % dDNA and alanine aminotransferase, hepatitis B e antigen status, HBV DNA levels, fibrosis levels, compensated or decompensated liver cirrhosis, genotype, or drug treatment. However, the % dDNA was significantly lower in individuals infected with lamivudine-resistant (LMV-R) HBV compared with wild-type HBV (P < 0.0001), indicating that antiviral drug resistance alters the balance between defective and genomic length DNA in circulation. Experiments in vitro using HBV encoding LMV-R mutations confirmed these results.
Conclusion: Our results identified no association between dDNA and parameters associated with disease status and suggested that the relative abundance of dDNA is largely dependent on the integrity of the HBV polymerase and is unrelated to the severity of liver disease.
Figures



References
-
- Guidotti LG, Rochford R, Chung J, Shapiro M, Purcell R, Chisari FV. Viral clearance without destruction of infected cells during acute HBV infection. Science. 1999;284:825–829. - PubMed
-
- Thio CL, Seaberg EC, Skolasky R, Jr, Phair J, Visscher B, Munoz A, et al. HIV-1, hepatitis B virus, and risk of liver-related mortality in the Multicenter Cohort Study (MACS) Lancet. 2002;360:1921–1926. - PubMed
-
- Bica I, McGovern B, Dhar R, Stone D, McGowan K, Scheib R, et al. Increasing mortality due to end-stage liver disease in patients with human immunodeficiency virus infection. Clin Infect Dis. 2001;32:492–497. - PubMed
-
- Revill PA, Littlejohn M, Ayres A, Yuen L, Colledge D, Bartholomeusz A, et al. Identification of a novel hepatitis B virus precore/core deletion mutant in HIV/hepatitis B virus co-infected individuals. AIDS. 2007;21:1701–1710. - PubMed
-
- Gunther S, Sommer G, Iwanska A, Will H. Heterogeneity and common features of defective hepatitis B virus genomes derived from spliced pregenomic RNA. Virology. 1997;238:363–371. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources