Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008:37:317-36.
doi: 10.1146/annurev.biophys.37.032807.125908.

Translocation and unwinding mechanisms of RNA and DNA helicases

Affiliations
Review

Translocation and unwinding mechanisms of RNA and DNA helicases

Anna Marie Pyle. Annu Rev Biophys. 2008.

Abstract

Helicases and remodeling enzymes are ATP-dependent motor proteins that play a critical role in every aspect of RNA and DNA metabolism. Most RNA-remodeling enzymes are members of helicase superfamily 2 (SF2), which includes many DNA helicase enzymes that display similar structural and mechanistic features. Although SF2 enzymes are typically called helicases, many of them display other types of functions, including single-strand translocation, strand annealing, and protein displacement. There are two mechanisms by which RNA helicase enzymes unwind RNA: The nonprocessive DEAD group catalyzes local unwinding of short duplexes adjacent to their binding sites. Members of the processive DExH group often translocate along single-stranded RNA and displace paired strands (or proteins) in their path. In the latter case, unwinding is likely to occur by an active mechanism that involves Brownian motor function and stepwise translocation along RNA. Through structural and single-molecule investigations, researchers are developing coherent models to explain the functions and dynamic motions of helicase enzymes.

PubMed Disclaimer

Publication types

LinkOut - more resources