Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Nov;23(11):3494-500.
doi: 10.1093/ndt/gfn353. Epub 2008 Jun 24.

Effects of epithelial-to-mesenchymal transition on acute stress response in human peritoneal mesothelial cells

Affiliations

Effects of epithelial-to-mesenchymal transition on acute stress response in human peritoneal mesothelial cells

Regina Vargha et al. Nephrol Dial Transplant. 2008 Nov.

Abstract

Background: During peritoneal dialysis, mesothelial cells undergo epithelial-to-mesenchymal transition (EMT), resulting in markedly altered protein expression. This potentially includes heat-shock proteins (HSP), the main effectors of cellular repair. Thus, chronic cellular processes, such as EMT, may influence acute stress responses and thus survival of mesothelial cells following non-lethal injury upon exposure to peritoneal dialysis fluid (PDF).

Methods: In this study, we investigated the effects of EMT on acute stress responses and cytoresistance in human peritoneal mesothelial cells. In vivo EMT was defined as a fibroblast-like growth pattern in mesothelial cells grown from peritoneal effluents, and in vitro EMT was induced by TGF-beta1 in mesothelial cells grown from omental tissue. Morphologic EMT was validated by western blot analysis of EMT marker proteins (ezrin, alpha-SMA). Expression of HSP and cellular survival was evaluated in a simple in vitro PDF exposure model.

Results: In vivo and in vitro EMT resulted in marked effects on phenotypes of mesothelial cells, associated with differential HSP expression. In vivo 'chronic' EMT resulted in lower expression of HSP-27 and HSP-72, whereas in vitro 'acute' EMT was associated with increased HSP-27 and decreased HSP-72 expression. Following PDF exposure, there were no effects of in vivo EMT on the stress induction of HSP, and survival of epithelial versus fibroblast-like phenotypes was comparable. The non-stressful induction of HSP-27 following TGF-beta1 pretreatment resulted in the attenuated stress induction of HSP, and in improved survival in following PDF exposure.

Conclusions: Taken together, this study confirms that mesothelial cells are not 'unchanged' or 'static targets' during the clinical course of PD treatment. The cellular processes during EMT play a complex role in acute cellular stress response and cytoresistance of mesothelial cells. Sequential analysis at different stages of EMT will be essential to provide more insights on cytoprotective cellular processes in in vitro and in vivo models of PD.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms