Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jul 15;121(Pt 14):2382-93.
doi: 10.1242/jcs.021394. Epub 2008 Jun 24.

eIF3k regulates apoptosis in epithelial cells by releasing caspase 3 from keratin-containing inclusions

Affiliations

eIF3k regulates apoptosis in epithelial cells by releasing caspase 3 from keratin-containing inclusions

Yu-Min Lin et al. J Cell Sci. .

Abstract

Keratins 8 and 18 (collectively referred to as K8/K18) are the major components of intermediate filaments of simple epithelial cells. Recent studies have revealed the function of K8/K18 in apoptosis modulation. Here, we show that eIF3k, originally identified as the smallest subunit of eukaryotic translation initiation factor 3 (eIF3) complexes, also localizes to keratin intermediate filaments and physically associates with K18 in epithelial cells. Upon induction of apoptosis, eIF3k colocalizes with K8/K18 in the insoluble cytoplasmic inclusions. Depletion of endogenous eIF3k de-sensitizes simple epithelial cells to various types of apoptosis through a K8/K18-dependent mechanism and promotes the retention of active caspase 3 in cytoplasmic inclusions by increasing its binding to keratins. Consequently, the cleavage of caspase cytosolic and nuclear substrates, such as ICAD and PARP, respectively, is reduced in eIF3k-depleted cells. This study not only reveals the existence of eIF3k in a subcellular compartment other than the eIF3 complex, but also identifies an apoptosis-promoting function of eIF3k in simple epithelial cells by relieving the caspase-sequestration effect of K8/K18, thereby increasing the availability of caspases to their non-keratin-residing substrates.

PubMed Disclaimer

Publication types

LinkOut - more resources