Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2008 Nov;49(11):2379-89.
doi: 10.1194/jlr.M800199-JLR200. Epub 2008 Jun 24.

Cytochromes P450 from family 4 are the main omega hydroxylating enzymes in humans: CYP4F3B is the prominent player in PUFA metabolism

Affiliations
Free article
Comparative Study

Cytochromes P450 from family 4 are the main omega hydroxylating enzymes in humans: CYP4F3B is the prominent player in PUFA metabolism

Maude Fer et al. J Lipid Res. 2008 Nov.
Free article

Abstract

Human CYP450 omega-hydroxylases of the CYP4 family are known to convert arachidonic acid (AA) to its metabolite 20-hydroxyeicosatetraenoic acid (20-HETE). This study deals with hydroxylations of four PUFAs, eicosatrienoic acid (ETA), AA, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) by either human recombinant CYP4s enzymes or human liver microsomal preparations. CYP4F3A and CYP4F3B were the most efficient omega-hydroxylases of these PUFAs. Moreover, the differences in the number of unsaturations of ETA, AA, and EPA allowed us to demonstrate a rise in the metabolic rate of hydroxylation when the double bond in 14-15 or 17-18 was missing. With the CYP4F enzymes, the main pathway was always the omega-hydroxylation of PUFAs, whereas it was the (omega-1)-hydroxylation with CYP1A1, CYP2C19, and CYP2E1. Finally, we demonstrated that the omega9 and omega3 PUFAs (ETA, EPA, and DHA) could all be used as alternative substrates in AA metabolism by human CYP4F2 and -4F3B. Thus, they decreased the ability of these enzymes to convert AA to 20-HETE. However, although ETA was the most hydroxylated substrate, EPA and DHA were the most potent inhibitors of the conversion of AA to 20-HETE. These findings suggest that some physiological effects of omega3 FAs could partly result from a shift in the generation of active hydroxylated metabolites of AA through a CYP-mediated catalysis.

PubMed Disclaimer

Publication types

MeSH terms

Substances