Measurement of the distribution of site enhancements in surface-enhanced Raman scattering
- PMID: 18583578
- DOI: 10.1126/science.1159499
Measurement of the distribution of site enhancements in surface-enhanced Raman scattering
Abstract
On nanotextured noble-metal surfaces, surface-enhanced Raman scattering (SERS) is observed, where Raman scattering is enhanced by a factor, G, that is frequently about one million, but underlying the factor G is a broad distribution of local enhancement factors, eta. We have measured this distribution for benzenethiolate molecules on a 330-nanometer silver-coated nanosphere lattice using incident light of wavelength 532 nanometers. A series of laser pulses with increasing electric fields burned away molecules at sites with progressively decreasing electromagnetic enhancement factors. The enhancement distribution P(eta)deta was found to be a power law proportional to (eta)(-1.75), with minimum and maximum values of 2.8 x 10(4) and 4.1 x 10(10), respectively. The hottest sites (eta >10(9)) account for just 63 in 1,000,000 of the total but contribute 24% to the overall SERS intensity.
Similar articles
-
Evaluation of electromagnetic enhancement of surface enhanced hyper Raman scattering using plasmonic properties of binary active sites in single Ag nanoaggregates.J Chem Phys. 2009 Jun 7;130(21):214706. doi: 10.1063/1.3146788. J Chem Phys. 2009. PMID: 19508086
-
Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection.J Chem Phys. 2006 Nov 28;125(20):204701. doi: 10.1063/1.2390694. J Chem Phys. 2006. PMID: 17144717
-
Minimum enhancement of surface-enhanced Raman scattering for single-molecule detections.J Phys Chem A. 2009 Jul 30;113(30):8529-32. doi: 10.1021/jp902714t. J Phys Chem A. 2009. PMID: 19719310
-
Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays.Nanotechnology. 2008 Apr 9;19(14):145305. doi: 10.1088/0957-4484/19/14/145305. Epub 2008 Mar 4. Nanotechnology. 2008. PMID: 21817759
-
A unified view of surface-enhanced Raman scattering.Acc Chem Res. 2009 Jun 16;42(6):734-42. doi: 10.1021/ar800249y. Acc Chem Res. 2009. PMID: 19361212
Cited by
-
Multiple valence states of Fe boosting SERS activity of Fe3O4 nanoparticles and enabling effective SERS-MRI bimodal cancer imaging.Fundam Res. 2022 May 3;4(4):858-867. doi: 10.1016/j.fmre.2022.04.018. eCollection 2024 Jul. Fundam Res. 2022. PMID: 39156566 Free PMC article.
-
Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection.Nat Mater. 2010 Jan;9(1):60-7. doi: 10.1038/nmat2596. Epub 2009 Dec 13. Nat Mater. 2010. PMID: 20010829
-
Present and Future of Surface-Enhanced Raman Scattering.ACS Nano. 2020 Jan 28;14(1):28-117. doi: 10.1021/acsnano.9b04224. Epub 2019 Oct 8. ACS Nano. 2020. PMID: 31478375 Free PMC article.
-
Liquid-state quantitative SERS analyzer on self-ordered metal liquid-like plasmonic arrays.Nat Commun. 2018 Sep 7;9(1):3642. doi: 10.1038/s41467-018-05920-z. Nat Commun. 2018. PMID: 30194348 Free PMC article.
-
SERS Hotspot Engineering by Aerosol Self-Assembly of Plasmonic Ag Nanoaggregates with Tunable Interparticle Distance.Adv Sci (Weinh). 2022 Aug;9(22):e2201133. doi: 10.1002/advs.202201133. Epub 2022 Jun 7. Adv Sci (Weinh). 2022. PMID: 35670133 Free PMC article.
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous