Stability analysis and optimal vaccination of an SIR epidemic model
- PMID: 18584947
- DOI: 10.1016/j.biosystems.2008.05.004
Stability analysis and optimal vaccination of an SIR epidemic model
Abstract
Almost all mathematical models of diseases start from the same basic premise: the population can be subdivided into a set of distinct classes dependent upon experience with respect to the relevant disease. Most of these models classify individuals as either a susceptible individual S, infected individual I or recovered individual R. This is called the susceptible-infected-recovered (SIR) model. In this paper, we describe an SIR epidemic model with three components; S, I and R. We describe our study of stability analysis theory to find the equilibria for the model. Next in order to achieve control of the disease, we consider a control problem relative to the SIR model. A percentage of the susceptible populations is vaccinated in this model. We show that an optimal control exists for the control problem and describe numerical simulations using the Runge-Kutta fourth order procedure. Finally, we describe a real example showing the efficiency of this optimal control.
Similar articles
-
Stability analysis and optimal control of an SIR epidemic model with vaccination.Biosystems. 2011 May-Jun;104(2-3):127-35. doi: 10.1016/j.biosystems.2011.02.001. Epub 2011 Feb 21. Biosystems. 2011. PMID: 21315798
-
Optimal treatment of an SIR epidemic model with time delay.Biosystems. 2009 Oct;98(1):43-50. doi: 10.1016/j.biosystems.2009.05.006. Epub 2009 May 21. Biosystems. 2009. PMID: 19464340
-
Global stability of an SIR epidemic model with information dependent vaccination.Math Biosci. 2008 Nov;216(1):9-16. doi: 10.1016/j.mbs.2008.07.011. Math Biosci. 2008. PMID: 18725233
-
Optimal prophylactic vaccination in segregated populations: When can we improve on the equalising strategy?Epidemics. 2015 Jun;11:7-13. doi: 10.1016/j.epidem.2015.01.002. Epub 2015 Jan 24. Epidemics. 2015. PMID: 25979277 Review.
-
Dynamics of a fractional order mathematical model for COVID-19 epidemic.Adv Differ Equ. 2020;2020(1):420. doi: 10.1186/s13662-020-02873-w. Epub 2020 Aug 14. Adv Differ Equ. 2020. PMID: 32834820 Free PMC article. Review.
Cited by
-
Dynamic analysis and optimal control of stochastic information cross-dissemination and variation model with random parametric perturbations.PLoS One. 2024 May 23;19(5):e0303300. doi: 10.1371/journal.pone.0303300. eCollection 2024. PLoS One. 2024. PMID: 38781238 Free PMC article.
-
Modelling the dynamics of acute and chronic hepatitis B with optimal control.Sci Rep. 2023 Sep 11;13(1):14980. doi: 10.1038/s41598-023-39582-9. Sci Rep. 2023. PMID: 37696844 Free PMC article.
-
A Deterministic Model for Q Fever Transmission Dynamics within Dairy Cattle Herds: Using Sensitivity Analysis and Optimal Controls.Comput Math Methods Med. 2020 Jan 31;2020:6820608. doi: 10.1155/2020/6820608. eCollection 2020. Comput Math Methods Med. 2020. PMID: 32089730 Free PMC article.
-
The Complex Dynamics of Hepatitis B Infected Individuals with Optimal Control.J Syst Sci Complex. 2021;34(4):1301-1323. doi: 10.1007/s11424-021-0053-0. Epub 2021 Feb 4. J Syst Sci Complex. 2021. PMID: 33564220 Free PMC article.
-
Dynamical analysis and numerical assessment of the 2019-nCoV virus transmission with optimal control.Sci Rep. 2025 Mar 4;15(1):7587. doi: 10.1038/s41598-025-90915-2. Sci Rep. 2025. PMID: 40038386 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical