Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976;35(5):529-41.

Stimulation of Ca2+ uptake by cyclic AMP and protein kinase in sarcoplasmic reticulum-rich and sarcolemma-rich microsomal fractions from rabbit heart

  • PMID: 185862

Stimulation of Ca2+ uptake by cyclic AMP and protein kinase in sarcoplasmic reticulum-rich and sarcolemma-rich microsomal fractions from rabbit heart

H Will et al. Acta Biol Med Ger. 1976.

Abstract

The effect of cyclic AMP on Ca2+ uptake by rabbit heart microsomal vesicular fractions representing mainly fragments of either sarcoplasmic reticulum or sarcolemma was investigated in the presence and absence of soluble cardiac protein kinase and with microsomes prephosphorylated by cyclic AMP-dependent protein kinase. The acceleration of oxalate-promoted Ca2+ uptake by fragmented sarcoplasmic reticulum following cyclic AMP-dependent membrane protein phosphorylation, observed by other authors, was confirmed. In addition it was found that the acceleration was greatest at pH 7.2 and almost negligible at pH 6.0 and pH 7.8. A very marked increase in Ca2+ uptake by cyclic AMP-dependent membrane protein phosphorylation was observed in the presence of boric acid, a reversible inhibitor of Ca2+ uptake. In addition to the microsomal fraction thought to represent mainly fragments of the sarcoplasmic reticulum, the effect of protein kinase and cyclic AMP on Ca2+ uptake was investigated in a cardiac sarcolemma-enriched membrane fraction. Ca2+ uptake by sarcolemmal vesicles, unlike Ca2+ uptake by sarcoplasmic reticulum vesicles, was inhibited by low doses of digitoxin. The acceleration of oxalate-promoted Ca2+ uptake by cyclic AMP and soluble cardiac protein kinase, however, was quite similar to what was seen in preparations of fragmented sarcoplasmic reticulum, which suggests that it may reflect an acceleration of active Ca2+ transport across the myocardial cell surface membrane.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources