Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jul;261(1 Pt 1):C132-42.
doi: 10.1152/ajpcell.1991.261.1.C132.

pHi regulation in frog retinal pigment epithelium: two apical membrane mechanisms

Affiliations

pHi regulation in frog retinal pigment epithelium: two apical membrane mechanisms

H Lin et al. Am J Physiol. 1991 Jul.

Abstract

This study demonstrates that the apical membrane of frog retinal pigment epithelium (RPE) contains two intracellular pH (pHi) regulatory mechanisms, an electrogenic Na-HCO3 cotransporter blocked by DIDS and an amiloride-inhibitable Na-H antiporter. pHi was studied using the pH-sensitive dye 2',7'-bis(2-carboxyethyl)-5,6-carboxyfluorescein (BCECF). In these cells resting pHi equals 7.26 +/- 0.09 (n = 58). After an acid load (NH4Cl prepulse), pHi recovery required apical extracellular Na concentration ([Na]o) in HCO3 or HCO3-free Ringer. In HCO3 Ringer recovery was completely blocked by 1 mM apical DIDS (n = 5) but was not affected by absence of Cl. In HCO3-free Ringer, recovery was completely blocked by 1 mM apical amiloride (n = 3). At resting pHi, the intrinsic pH-buffering capacity of the cell is approximately 7.1 mM/pH and rises monotonically as pHi decreases. In HCO3 Ringer, the initial rate of acidification caused by apical Na removal, 0.39 +/- 0.03 pH/min (n = 26), was 80-90% inhibited by apical DIDS (n = 5) and 16% inhibited by 1 mM apical amiloride (n = 7), but not affected by absence of Cl. In HCO3 Ringer, initial rates of acidification induced by apical DIDS or amiloride were 0.11 +/- 0.06 (n = 5) and 0.03 +/- 0.02 pH/min (n = 7), respectively. These results indicate that the Na-HCO3 cotransporter accounts for 80-90% of the acid extrusion from frog RPE cells. Increasing apical [K]o from 2 to 5 mM approximates the in vivo apical [K]o changes during a light-dark transition and alkalinizes the cells. [K]o-induced alkalinization had an initial rate of 0.11 +/- 0.02 pH/min (n = 16), which was approximately 75% inhibited by apical DIDS (to 0.04 +/- 0.01 pH/min, n = 7) and completely blocked by HCO3/CO2 removal from both bathing solutions. [K]o-induced pHi changes alter RPE transport mechanisms and may affect RPE-photoreceptor interactions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources