Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jun 30:4:16.
doi: 10.1186/1746-4811-4-16.

A rapid and robust method for simultaneously measuring changes in the phytohormones ABA, JA and SA in plants following biotic and abiotic stress

Affiliations

A rapid and robust method for simultaneously measuring changes in the phytohormones ABA, JA and SA in plants following biotic and abiotic stress

Silvia Forcat et al. Plant Methods. .

Abstract

We describe an efficient method for the rapid quantitative determination of the abundance of three acidic plant hormones from a single crude extract directly by LC/MS/MS. The method exploits the sensitivity of MS and uses multiple reaction monitoring and isotopically labelled samples to quantify the phytohormones abscisic acid, jasmonic acid and salicylic acid in Arabidopsis leaf tissue.

PubMed Disclaimer

Figures

Figure 1
Figure 1
The phytohormone extraction method is reproducible. (a) The abundance of the phytohormones ABA, JA, SA and the SA glycoside expressed as a ratio of the added internal standard. Standard error for the seven replicates is less than 10% of the mean value. Glycosylated derivatives can also be determined by ratioing relative to the unglycosylated internal standard. (b) Determination of the absolute value of phytohormones present in the stressed tissue demonstrates that this method can accurately capture the dynamic range of phytohormones with small amounts of starting material (10 mg).
Figure 2
Figure 2
Comparison of absolute yields from freeze dried (FD) or fresh frozen Arabidopsis leaf material. Yields of both JA and SA were consistently higher using fresh frozen material, probably due to a combination of both analyte insolubilisation or volatilisation during the freeze drying process.
Figure 3
Figure 3
Linearity of detection of phytohormones. To ensure the method is capable of capturing the range of differences in phytohormones expected during stress associated experiments, five diluted deuterated standards were compared to unlabelled "stressed controls" in ratios indicated. a-c demonstrates that for ABA, JA and SA respectively, there is a statistically significant linear increase in abundance of the expected ion over a 20 fold range.
Figure 4
Figure 4
Phytohormone response metrics. To determine whether 10 mg was sufficient sample to elicit a linear response in LC/MS signal, phytohormones were determined in 5, 10 and 15 mg amounts of freeze dried material. ABA, JA and SA and SA-glyc (a-d respectively) all show a linear response with increasing amounts of sample (R2 > 0.997).
Figure 5
Figure 5
The extraction method is capable of capturing the dynamic response of phytohormones to inducing stresses. JA, ABA and SA levels were determined following stresses designed to elevate specific levels of each hormone (a-c). (a) Following wounding by mechanical damage JA levels increase 8 fold within 5 minutes and increase over the following 2 h. (b) Two hours desiccation of detached leaves (at 60% RH) is sufficient to increase foliar ABA levels 8 fold. (c) Challenge with the virulent bacterial pathogen, DC3000 or the DC3000 hrp mutant elicits increases in SA levels 21 hpi in wild-type but not the SA biosynthetic mutant, sid2. (d) Challenge with virulent DC3000 induces ABA in Arabidopsis leaves within 6 hours post inoculation (hpi).

References

    1. Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol. 2005;43:205–27. doi: 10.1146/annurev.phyto.43.040204.135923. - DOI - PubMed
    1. Robert-Seilaniantz A, Navarro L, Bari R, Jones JDG. Pathological hormone imbalances. Curr Opin Plant Biol. 2007;10:372–379. doi: 10.1016/j.pbi.2007.06.003. - DOI - PubMed
    1. Loake G, Grant M. Salicylic acid in plant defence--the players and protagonists. Curr Opin Plant Biol. 2007;10:466–72. doi: 10.1016/j.pbi.2007.08.008. - DOI - PubMed
    1. Mur LA, Kenton P, Atzorn R, Miersch O, Wasternack C : The Outcomes of Concentration-Specific Interactions between Salicylate and Jasmonate Signaling Include Synergy, Antagonism, and Oxidative Stress Leading to Cell Death. Plant Physiol. 2006;140:249–62. doi: 10.1104/pp.105.072348. - DOI - PMC - PubMed
    1. Buell CR, Joardar V, Lindeberg M, Selengut J, Paulsen IT, Gwinn ML, Dodson RJ, Deboy RT, Durkin AS, Kolonay JF, Madupu R, Daugherty S, Brinkac L, Beanan MJ, Haft DH, Nelson WC, Davidsen T, Zafar N, Zhou L, Liu J, Yuan Q, Khouri H, Fedorova N, Tran B, Russell D, Berry K, Utterback T, Van Aken SE, Feldblyum TV, D'Ascenzo M, Deng WL, Ramos AR, Alfano JR, Cartinhour S, Chatterjee AK, Delaney TP, Lazarowitz SG, Martin GB, Schneider DJ, Tang X, Bender CL, White O, Fraser CM, Collmer A. The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci USA. 2003;100:10181–6. doi: 10.1073/pnas.1731982100. - DOI - PMC - PubMed

LinkOut - more resources