Loss of CHFR in human mammary epithelial cells causes genomic instability by disrupting the mitotic spindle assembly checkpoint
- PMID: 18592005
- PMCID: PMC2435002
- DOI: 10.1593/neo.08176
Loss of CHFR in human mammary epithelial cells causes genomic instability by disrupting the mitotic spindle assembly checkpoint
Abstract
CHFR is an E3 ubiquitin ligase and an early mitotic checkpoint protein implicated in many cancers and in the maintenance of genomic stability. To analyze the role of CHFR in genomic stability, by siRNA, we decreased its expression in genomically stable MCF10A cells. Lowered CHFR expression quickly led to increased aneuploidy due to many mitotic defects. First, we confirmed that CHFR interacts with the mitotic kinase Aurora A to regulate its expression. Furthermore, we found that decreased CHFR led to disorganized multipolar mitotic spindles. This was supported by the finding that CHFR interacts with alpha-tubulin and can regulate its ubiquitination in response to nocodazole and the amount of acetylated alpha-tubulin, a component of the mitotic spindle. Finally, we found a novel CHFR interacting protein, the spindle checkpoint protein MAD2. Decreased CHFR expression resulted in the mislocalization of both MAD2 and BUBR1 during mitosis and impaired MAD2/CDC20 complex formation. Further evidence of a compromised spindle checkpoint was the presence of misaligned metaphase chromosomes, lagging anaphase chromosomes, and defective cytokinesis in CHFR knockdown cells. Importantly, our results suggest a novel role for CHFR regulating chromosome segregation where decreased expression, as seen in cancer cells, contributes to genomic instability by impairing the spindle assembly checkpoint.
Figures






References
-
- Chaturvedi P, Sudakin V, Bobiak ML, Fisher PW, Mattern MR, Jablonski SA, Hurle MR, Zhu Y, Yen TJ, Zhou BB. Chfr regulates a mitotic stress pathway through its RING-finger domain with ubiquitin ligase activity. Cancer Res. 2002;2:1797–1801. - PubMed
-
- Ogi K, Toyota M, Mita H, Satoh A, Kashima L, Sasaki Y, Suzuki H, Akino K, Nishikawa N, Noguchi M, et al. Small interfering RNA-induced CHFR silencing sensitizes oral squamous cell cancer cells to microtubule inhibitors. Cancer Biol Ther. 2005;4:73–780. - PubMed
-
- Privette LM, Gonzalez ME, Ding L, Kleer CG, Petty EM. Altered expression of the early mitotic checkpoint protein, CHFR, in breast cancers: implications for tumor suppression. Cancer Res. 2007;67:6064–6074. - PubMed
-
- Sakai M, Hibi K, Kanazumi N, Nomoto S, Inoue S, Takeda S, Nakao A. Aberrant methylation of the CHFR gene in advanced hepatocellular carcinoma. Hepatogastroenterology. 2005;52:1854–1857. - PubMed
-
- Satoh A, Toyota M, Itoh F, Sasaki Y, Suzuki H, Ogi K, Kikuchi T, Mita H, Yamashita T, Kojima T, et al. Epigenetic inactivation of CHFR and sensitivity to microtubule inhibitors in gastric cancer. Cancer Res. 2003;63:8606–8613. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources