Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jul 3;3(1):85-98.
doi: 10.1016/j.stem.2008.06.001.

Efficient hematopoietic differentiation of human embryonic stem cells on stromal cells derived from hematopoietic niches

Affiliations
Free article

Efficient hematopoietic differentiation of human embryonic stem cells on stromal cells derived from hematopoietic niches

Maria H Ledran et al. Cell Stem Cell. .
Free article

Abstract

Hematopoietic stem cells derived from human embryonic stem cells (hESCs) could provide a therapeutic alternative to bone marrow transplants, but the efficiency of currently available derivation protocols is low. In this study, we investigated whether coculture with monolayers of cells derived from mouse AGM and fetal liver, or with stromal cell lines derived from these tissues, can enhance hESC hematopoietic differentiation. We found that under such conditions hESC-derived differentiating cells formed early hematopoietic progenitors, with a peak at day 18-21 of differentiation that corresponded to the highest CD34 expression. These hESC-derived hematopoietic cells were capable of primary and secondary hematopoietic engraftment into immunocompromised mice at substantially higher levels than described previously. Transcriptional and functional analysis identified TGF-beta1 and TGF-beta3 as positive enhancers of hESC hematopoietic differentiation that can further stimulate this process when added to the culture. Overall, our findings represent significant progress toward the goal of deriving functional hematopoietic stem cells from hESCs.

PubMed Disclaimer

Comment in

Publication types

MeSH terms